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Exact Solutions of a Difference-Difference Nonlinear
Equation with the mKdV Type Soliton

Fumio YOSHIDA* and Kenji SETO**

Abstract

We propose a difference-difference nonlinear equation A;Tanfl(qﬁn’j) = A¢Tan"'(y¢, ;), and present
some exact solutions, namely from the 1-soliton solution up to the 4-soliton one. Furthermore we
develop an argument for the N-soliton solution, and discuss the possibility that the equation belongs to
an integrable system.
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1. Introduction

Recently, the nonlinear equations having discrete space-time variables, namely the discretized soliton
equations are researched intensively from the viewpoint of the integrable equations.” One standard
criterion that a certain soliton equation belongs to the integrable system indicates that the equation has
the N-soliton solution. As an effective means to discretize a nonlinear equation keeping this integrability,
Hirota’s bilinear method is well known.? And the discrete time Toda lattice equation or discrete KAV
one has been found later.?—5)

If one of the model equations that has the soliton solution can be found, it is very effective for the
research of the nonlinear system. For this reason, we have looked for a discretized nonlinear equation
which has the soliton solution, and found one model equation.

Here we propose a discrete space-time nonlinear difference-difference equation

ASTan™Y (¢, ;) = A% Tan™} (v¢,, ), (1)

in which n and j are integers describing the lattice points of space and time respectively, and 1st order
central difference operator A; is defined as A; fi = (fi+1—fj—1)/2 , and the same is applied to the suffix
n. The parameter v is a real constant corresponding to the time scale, and relating to continuous time ¢
as t = vj. As is known from the linear approximation of the equation, the positive /negative sign of ~
corresponds to the left/right-traveling wave respectively. If v = +1 | the equation reduces to linear one.
So, we assume that v is not equal to £1 . If |y| > 1, redefining v¢,, ; as ¢, ; , and interchanging n and
J, we get the equation where ~ is substituted for 1/v. So, we assume that 0 < |y| < 1, without loss of
generality.

In this paper, we offer some exact solutions of the equation, namely 1-soliton, 2-soliton, optical soliton,
complex soliton, 3-, 4-soliton and N-soliton, and discuss the possibility that the equation belongs to an
integrable system.
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2. Transformation of Equation (1)

In the following transformation from the variable ¢, ; to f, ;,
Tan™! (Y9n5) = 2A5Tan™" (fn.), (2)

the equation (1) is transformed to

Af;fn,j = Afzf’n.,j (: qu > (3)
L+ foj+1fn—1 1+ fog1,jfn-1, 2"

It is noticed that the equation (3) is invariant under a linear transformation Ty for an arbitrary 6,

cos - f, ;j —sinf
sin - f, ; +cos

9n.j = To(fnj) = (4)

Therefore, when a solution f, ; is given, g, ; also satisfies the equation. The transformation (4) has
following properties
To,To, = To16,, To=1, T, =T, (5)

According to this, the transformation Ty forms a rotation group.

3. 1-Soliton Solution
In the equation (3), if we put f,; = Z = exp(kn + wj + ), we get the dispersion relation
sinhw = ~ysinh k, (6)
and the mKdV type 1-soliton solution
¢n,; = sinh k sech(kn + wj + 4), (7)

where k, w, § are constants corresponding to wave number, angular frequency and initial phase. This
solution describes the left /right-traveling wave for positive/negative v respectively.
Assume long wave continuous limit, v — 0, & — 0, t = vj, = n, and the equation (1) reduces to

the mKdV one
96 _10°6 _

0¢ 2

- _ (1 — 2 =90 8

o~ )5 "G O ®)
and the solution (7) also reduces to the mKdV soliton solution.
4. Decomposition to Bilinear Form

We introduce the fractional transformation f, ; = F;, ;/G ;, in order to decompose the equation (3).
The result is
sinh(D,;)F - G sinh(D,)F - G

cosh(D;)(F - F+G-G) - ’Ycosh(Dn)(F -F+G-G)’ ©)

where D; is Hirota’s D operator defined by

sinh(D;)F - G = Fsinh(9; — 9;)G. (10)
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The equation (9) can be decomposed to two bilinear coupled equations

sinh(D;)F' - G = vsinh(D,)F - G,

11
cosh(D;)(F - F 4+ G- G) = cosh(Dp)(F - F+ G- G). ()
If we put F' = Z = exp(kn+wj +¢), G =1, we can get the 1-soliton solution (6), (7).
5. 2-Soliton Solution
To obtain the 2-soliton solution, we assume in (11),
F=7,+ ZQ, G=1+ A12Z1Z2, (12)

where Z; = exp(kin+w;j+9;), (i =1,2), Ajz is a coupling constant of two solitons. Substituting (12)
in (11), we obtain the dispersion relation for each soliton,

sinhw; = ysinhk;, (i=1, 2), (13)

and the coupling constant
cosh(wy — wa) — cosh(ky — k2)

~ cosh(wy 4 ws) — cosh(ky + ka)

Ayp = (14)
This expression gives the phase shift for the collision of two solitons. This is similar to that of Toda
lattice or mKdV equations.

Here, we compare the expression (14) with the coupling constant of the discrete time Toda lattice

equation
2 2 2 2 /2
AIn(1+¢%) = A7 In(1 +~v7¢%), (15)

where A? is 2nd order difference operator which operates as A?F b = Fjq1 — 2F; + Fj_1. In this case,
the coupling constant At,q, is obtained as

sinh? (w1 —ws) — 72 sinhQ(kl — ko)
sinh?(w; + wo) — 2 sinh?(ky + ko)’

AToda = - (16)
under the restriction of the dispersion relation sinhw; = £ysinhk;, (i =1, 2). This is slightly different
from (14). But if we restrict the case where two solitons go to the same direction, the numerator and
denominator of (16) are factorized, and (16) coincides with (14) when the sign is changed. On the other
hand, the case where two solitons go to the opposite direction, both expressions can not be compared,
because the solitons are restricted to move one side only in our case.

6. Optical Soliton

In the 1-soliton solution (6) (7), if we adopt a complex wave number k = k, +mi, we get the 1-soliton
solution
Gn.; = (—1)" Tt sinh ksech(kyn + wj + 0), (17)

and the dispersion relation
sinhw = —ysinh k. (18)

This solution ¢, ; changes the sign alternately for each n point, so we call this type of soliton as an
optical one. It is also noticed that this type of soliton propagates to the counter direction with the
ordinary one despite the definite parameter ~.
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7. Complex Soliton

In the 2-soliton solution (12) (13), we assume that the two wave numbers ki, ko, angular frequencies
w1, wo and initial phases 01, d> form each complex conjugate respectively, namely, k1 = ko = k+ik/, w1 =
Uy =w+iw, § =08 =06 +id. By decomposing the dispersion relation sinh(w + iw’) = ysinh(k +
ik’) into the real and imaginary part, we obtain the coupled equations,

sinhw cosw’ = ~ysinh k cos k'
(19)

coshwsinw’ = 7 cosh ksink’.

These real part variables k, w, ¢ define the envelope of the soliton, and the imaginary part ones
k', o', & define the ripple.

From the equations (19), we can get the angular frequencies w, w’ as the functions of the wave numbers
k, K,

coshw = (VA+B+VA-B)/2

(20)
sinw’ = (\/A +B-—VA- B)/2,
in which A and B are defined as
A=1+~(sinh®k +sin’k’), B =2ycoshksink’. (21)
If we consider a special case of k' = 7/2, we get
coshw = ycoshk, sinw’ =1, for ycoshk > 1,
{coshw =1, sinw’ =ycoshk, for ycoshk <1, (22)

and if the case of k' = m,
coshw = 1/1+92sinh®k,  sinw’ = 0. (23)

The second expression of (22) shows w = 0, so the envelope of the soliton becomes stationary. On the
other hand, from (23) the solution satisfying ¥’ = m, w’ = 0, can be existent, which means that the
ripple becomes stationary, and the soliton in this case is nothing but the optical one.

The soliton solution in general in this section is obtained from (12) as,

F =2cos(k'n+w'j +0") exp(kn + wj + )

(24)
G =1+ Az exp2(kn + wj + 9)],

where the coupling constant A;5 becomes

~ cos(2w’) — cos(2k')
A2 = ~ cosh(2w) — cosh(2k) " (25)

8. 3-Soliton and 4-Soliton Solutions

To obtain the 3-soliton solution in the bilinear form equation (11), first we put

F=71+47Zy+ Z3+ A3 212273,

26
G=14 A12717Z5 + As3Zy 75 + A1 723771, (26)
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in which Z; = exp(kin +w;j +9;), (i =1, 2,3 ), A;; is the coupling constant representing the
interaction of two solitons and Ais3 is the constant for three solitons. Then the next four expressions
(27)-(30) are required for the expression (26) to satisfy the equation (11);

the dispersion relations of each soliton,

sinhw; = 7ysinh k;, (1=1,2,3) (27)
the coupling constants of two solitons,

cosh(w; — wj) — cosh(k; — k;)

A= — 28
" cosh(w; +wj) — cosh(k; + k;)’ (28)
the coupling constant of three solitons,
Aoz = A12A23A31, (29)
and the additional identical relation,
A123Py — A12 Py — Aoz P — A31 P = 0, (30)
where Py, P; are defined as
Py = sinh(wy + we + w3) — ysinh(ky + k2 + k3),
P = Sinh((.dg + w3 — wl) — ’)/Sinh(kz + kg — kl), a1
Py = sinh(wg + wy — UJQ) - ’)/Sinh(kg + k1 — k‘g), ( )
P = sinh(w1 + Wy — wg) — ’)/Sil’lh(kl + ko — kg).

The validity of the identical relation (30) under the condition of (27) is proved by using the symbolic-
manipulations software Maple.%)

Next, we refer to the 4-soliton solution. We put in the equation (11)

F=71+4Zs+ Zs+ Zy+ Ar93 217273 + Ao3uZo L3 Ly + Aza1 Z3 2471 + AsnoZaZ1 Zs,
(32)
G=1+A0217Zy+ A13Z1Z3 + A1uZ1 Zy + Asg ZoZs + AonZoZy + A3y Z3Zy + Ar234 21 22732y,

where Z; = exp(kin +w;j + 6;), (i =1,2,3,4). Then the next four expressions (33)—(36) are required
for the expression (32) to satisfy the equation (11);

the dispersion relations
sinhw; = ysinhk;, (i=1,2,3,4), (33)

the coupling constants of three solitons
Argz = A12A13A23,  Aogs = Aoz AoaAzs, Asin = AsaAsiAs,  Ase = An A Ara, (34)
the coupling constant of four solitons
Aia3q = A2 A13A14 A23 A24 Asa, (35)
where A; ; is the coupling constant of two solitons defined by (28), and the additional identical relation

A1234Q0 + A123Q4 + A234Q1 + Az41Q2 + As12Q3 + A12A31Q12 + A13A24Q 13 + A14A23Q14 =0, (36)
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where Qo, Q;, Qi ; are defined by
Qo = cosh(£2) — cosh(K),
Q; = cosh(£2 — 2w;) — cosh(K — 2k;),
Qi,j = cosh(£2 — 2w; — 2w;) — cosh(K — 2k; — 2k;), (37)

4 4
with 2= w, K=Y k.
i=1 i=1

The validity of the identity (36) is also proved by using Maple.

9. N-Soliton Solution

In this section, we are developing the N-soliton solution of the equation. Although it is actually
obtained by using the mathematical induction, we leave out the process and describe the result only.
We assume in the equation (11),

)

F = E E Al1,12, Ji20+1 71ZL2”'Z772£+1

2U+1<N l (1,2,

£=0 (41,82, ,i2041)
(38)
20<N [ (1,2,
_1+Z l Z A7172 12;5 2"'Zi21 ’
0=1 L (i1,ip, - ize)

in which the coupling constant of one soliton A; is defined as A; = 1, the factor of each soliton Z; is put
Z; = exp(kin+w;j +9;), (1t =1,2,---, N), and the suffix (i1,42, -+ ,i2¢1+1) is a subset defined as an
arbitrary (2¢ + 1)-combination from the set (1,2,---,N) and the summation is carried out for all the
subsets.
If we substitute the expression (38) into the equation (11), we get the dispersion relations of each
soliton and the coupling constants of two solitons A; ; as the same forms (27) and (28) respectively.
The coupling constants for 3- or higher soliton are given as

[H Aiy i) Atz - (=34, N) (39)

in the recurrence formula, namely A;, ;, ... ;, is the product of all the coupling constants of two solitons

included in the suffix. The results obtained here are anticipated.
The additional identity in this case depends on the even-odd parity of the number N.

In the case of N =2n+1,(n =1,2,---), if we define the function with hyperbolic sine as
Py = sinh(£2) — ysinh(K),
=sinh(2 — 2w;, — 2w;, — -+ — 2w;,) — ysinh(K — 2k;, — 2k, — -+ — ki),

12

(t=1,2,---,n) (40)

P:

B1,02,000 e

2n+1 2n+1

with 2= w, K=Yk,
i=1 i=1

the additional identity is obtained as

n (1,2,--- ,2n+1)
ALQ,--- ,2n+1P0 + Z(_)é Z Azl,zz, A11712,-- ,iePil,iz,-" e — 0, (41)

L0

(31,82, ig)
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where the over-line in the suffix means the complement of the numbers of the suffix for the set
(1,2,---,2n+1), e.g. Ay =A23.. 2nt+1, A75 = A3.4,.- 2041, ete.

In the case of N =2n+2, (n=1,2,---), if we define the function with hyperbolic cosine as

Qo = cosh(2) — cosh(K),
Qil,ig,“' e — COSh(Q — 2&)1‘1 — 2wi2 — s = 2(4)1'2) — COSh(K — lel — 2k12 — s = Qki/),

=1,2,---,n+1) (42)
2n+2 2n+2

with 0= w, K=k,
i=1 =1

the additional identity is given as

n (1,2, ,2n+2)
A1, ant2Qo + Z Z A i A s 0 Qi iz, i
£=1 (i1,i2, ,ig)
| (1220 42)
+ 5 Z AmAihiz;“' yin41 Qilﬂéy"‘ in41 0, (43)

(7"177"27"' 7i’ﬂ+l)

where the over-line means the complement of the numbers of the suffix for the set (1,2,---,2n + 2).
The identity (41) for n = 1 coincides with the one (30) for 3-soliton, and also the identity (43) for
n =1 coincides with the one (36) for 4-soliton.
We try to prove the validity of the identity in the case of N = 5 by using Maple, but we can not help
giving it up for the memory shortage of the computer. So the validity of these identities for N > 5 are
not proved yet.

10. Conclusions

In this paper, we proposed a new lst order difference-difference nonlinear equation, and presented
some exact solutions, namely from the 1-soliton solution up to the 4-soliton one. And the equation is
considered to be the simplest of those that have the mKdV type soliton solution.

We obtained the definite expression of the N-soliton solution with its additional identity, but the direct
proof of the validity of the identity for N > 5 is very difficult as mentioned above. However, we are
convinced that our assumption is correct, and there seems to be a possibility that our proposed equation
will belong to an integrable system.

It is also noticed that the solutions obtained here have close similarities to the ones of the discrete time
Toda lattice equation. Therefore, further investigations are needed for clearer relations between these
equations.
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