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ABSTRACT

Let � be a bounded measurable function on the unit circle. Then we shall give the form of a

weight� for which the singular integral operator ��􎨫􀀫�􎸒 is left invertible in the weighted space

�􎨲􀀨� 􀀩. �􎨫 is an analytic projection, �􎸒 is a co-analytic projection. When � is an 􀀨�􎨲􀀩 weight,

��􎨫􀀫�􎸒 is left invertible (resp. invertible) in �􎨲􀀨� 􀀩 if and only if Toeplitz operator �� is left

invertible (resp. invertible) in � 􎨲􀀨� 􀀩.
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§1. INTRODUCTION.

Let � denote the normalized Lebesgue measure on the unit circle �􀀽􀁻� 􀀻 􎘋� 􎘋􀀽􀀱􀁽 and let �

denote the identity function on �. For a function � in �􎨱􀀨�􀀩, its k-th Fourier coefficient �� 􀀨�􀀩 is

defined by

�� 􀀨�􀀩􀀽��
�􎸒� � ��

for all integers �. For a function � in �􎨱􀀨�􀀩, its harmonic conjugate function �� is defined by the

singular integral

��􀀨�􀀩􀀽����
� 􀀨�􂈒�􀀩 􀁣􀁯􀁴

�
􀀲 ��􀀨�􀀩.

Let 􀁃􀀨�􀀩 be an algebra of all continuous functions � on �, and let � be a disc algebra of all

functions � in 􀁃􀀨�􀀩 such that �� 􀀨�􀀩􀀽􀀰 for all negative integers �. The Hardy spaces � �, 􀀰􀀼�􂉦􂈞,

are defined as follows. For 􀀰􀀼�􀀼􂈞, � � is the � �􀀨�􀀩-closure of �, while � 􎸞 is defined to be the
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weak-􎨪 closure of� in �􎸞􀀨�􀀩. If an � in � � has the form �􀀽􀁥􀁸􀁰􀀨�􀀫���􀀫��􀀩 a.e. for some function

� in �􎨱
�􀀨�􀀩 and some real constant �, then � is called an outer function. Let �􎨰 be the subspace of

all functions � in � which satisfy �� 􀀨􀀰􀀩􀀽􀀰, and let ��􎨰 be the subspace of all complex conjugate

functions of functions in �􎨰. Since the intersection of � 􎨱 and �� 􎨱
􎨰 is only the zero function, the

analytic projection �􎨫 is defined as

�􎨫􀀨�􎨱􀀫�􎨲􀀩􀀽�􎨱, for all �􎨱 in � 􎨱 and all �􎨲 in �� 􎨱
􎨰 .

The co-analytic projection �􎸒 is defined by �􎸒􀀽�􂈒�􎨫 where � is an identity operator on � 􎨱􀀫�� 􎨱
􎨰 .

Then

�􎪱�􀀽
􀀱
􀀲 􀁻�􀂱���􀂱�� 􀀨􀀰􀀩􀁽, for all � in �􀀫��􎨰.

For a � in �􎸞􀀨�􀀩, the Toeplitz operator �� is defined as a map from � 􎨲 to � 􎨲 by

���􀀽�􎨫􀀨�� 􀀩, for all � in � 􎨲.

A non-negative integrable function� on � is said to be a weight. �􎨫 is bounded on � �􀀨� 􀀩 if and

only if � satisfies the ��-condition (cf.[6], p.254). 􀀨��􀀩 denotes the set of all positive weights �

satisfying the ��-condition. In the case �􀀽􀀲, Helson-Szegö theorem gives the form of a weight�

in 􀀨�􎨲􀀩 (cf.[6], p.147 and [7]). If� is in 􀀨�􎨲􀀩, then �� is bounded in � 􎨲􀀨� 􀀩 and ��􎨫􀀫�􎸒 is bounded

in �􎨲􀀨� 􀀩. A weight� does not necessarily belong to 􀀨�􎨲􀀩 when those operators are bounded. In

this paper we shall give the form of a weight� such that ��􎨫􀀫�􎸒 is bounded and left invertible

in �􎨲􀀨� 􀀩. It should be mentioned that� is in 􀀨�􎨲􀀩 if and only if there exist a function � in � 􎨱 and a

constant �, �􀀼􀀱 such that 􎘋�􂈒� 􎘋􂉦�� a.e.. If � is in 􀀨�􎨲􀀩, then 􀁬􀁯􀁧� is in BMO􀀽�􎸞
� 􀀨�􀀩􀀫

��􎸞
� 􀀨�􀀩.

Definition. (1) For a function � in �􎸞􀀨�􀀩,

�􀀨�􀀩􀀽􀁻�􂈈BMO 􀀻 �􀀽􎘋� 􎘋􀁥􀁸􀁰􀀨��􀀩 a.e.􀁽,
�􀀽􀁻�􂈈�􎸞􀀨�􀀩 􀀻 􎘋� 􎘋􀁥􀁸􀁰􀀨��􀀩 is bounded for some � in �􀀨�􀀩􀁽.

(2) For a function � in �􎸞􀀨�􀀩, we shall wright

�􀀨�􀀩􀀽􀁻�􂈈� 􀀻 �􀀨�􀀩􂉠􀀱􀁽 and �􀀨�􀀨�􀀩􀀩􀀽����􀀽��
��
􀀲� .

� 􀀨�􀀬 􀀫􀀩, � 􀀨�􀀬 􂈒􀀩 denote intervals such that

� 􀀨�􀀬 􀀫􀀩􀀽􀁛max􀁻􀀱􀀬 􎘌�􎘌􎸞􀁽, 􂈞􀀩,

� 􀀨�􀀬 􂈒􀀩􀀽􀀨􀀰, min􀁻􀀱, ess inf 􎘋� 􎘋􀁽􀁝 and put
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� 􀀨�􀀩􀀽� 􀀨�􀀬 􀀫􀀩􂋃� 􀀨�􀀬 􂈒􀀩,

� 􀀨�􀀩􀀽􀁻�􂈈� 􀀨�􀀩 􀀻 � 􎨲􂈒� belongs to �􀁽.

(3) For a function � in �􎸞􀀨�􀀩 and a constant � in � 􀀨�􀀩 satisfying �􀁻�􀀽� 􎨲􀁽􀀽􀀰, put

� 􀀨� 􀀬 �􀀩􀀽􎞂 􀀨�􂈒􀀱􀀩�
� 􎨲􂈒� 􎞂,

and for a function � satisfying 􎘋� 􎘋􂉦􀁣􀁯􀁳􎸒􎨱 � 􀀨� 􀀬 �􀀩 a.e., put

� 􀀨� 􀀬 �􀀬 �􀀩􀀽􀁣􀁯􀁳􀁨􎸒􎨱􎜂 􀁣􀁯􀁳 �
� 􀀨� 􀀬 �􀀩 􎜒.

In this paper we shall assume􂈒�􂉦Arg �􀀼�. For any � in �􎸞􀀨�􀀩, 􀀰􂉦�􀀨�􀀨�􀀩􀀩􂉦􀀱. If 􎘋� 􎘋􀀽􀀱

a.e., then � 􀀨�􀀩􀀽􀀨􀀰􀀬 􂈞􀀩. For any � in �􎸞􀀨�􀀩, Arg � belongs to a set �􀀨�􀀩. �􂈙�􀀽� and � contains

a set 􀁥􀁸􀁰 � 􎸞. � belongs to � if and only if there exist two functions �, � in �􎸞
� 􀀨�􀀩 such that �􀀫�� is

bounded above and �􀀽􀁥􀁸􀁰􀀨�􀀫��􀀩 a.e.. The following Lemma� is useful to study the boundedness

and the left invertibility of ��􎨫􀀫�􎸒 in �􎨲􀀨� 􀀩.

Lemma A. Suppose � is a function in �􎸞􀀨�􀀩 such that �􀀨�􀀨�􀀩􀀩􀀾􀀰. Suppose � is a constant in

� 􀀨�􀀩 such that�􀁻�􀀽� 􎨲􀁽􀀽􀀰. Then � 􀀨� 􀀬 �􀀩􂉦􀀱 a.e.. For a weight� such that 􀁬􀁯􀁧� is integrable, the

following conditions are equivalent.

(i) There exists a function � in � 􎨱 such that

􎘋􀀨� 􎨲􂈒�􀀩�􂈒� 􎘋􂉦􀁻􀀱􂈒� 􀀨� 􀀬 �􀀩􎨲􀁽􎨱􎐼􎨲 􎘋� 􎨲􂈒� 􎘋� a.e..

(ii) There exist three functions �, �, �, and a constant � such that

􎘋� 􎘋􂉦􀁣􀁯􀁳􎸒􎨱 � 􀀨� 􀀬 �􀀩 a.e., and �􀁻􎘋� 􎘋􀀽�􎐼􀀲􀁽􀀽􀀰 􀀻

􎘋� 􎘋􂉦� 􀀨� 􀀬 �􀀬 �􀀩 a.e. on �􀀨�􀀩, and 􂈒􀁬􀁯􀁧􀀨2 􀁣􀁯􀁳 �􀀩􂉦� a.e. on �􀀨�􀀩�􀀻

s is in �􀀨� 􎨲􂈒�􀀩, and �􀀽􎜂��􎨨�􎨩�
�

􎘋� 􎨲􂈒􀀱􎘋
􀀫��􎨨�􎨩

􀀱
􎘋�􂈒􀀱􎘋 􎜒􀁥􀁸􀁰􀀨�􂈒��􂈒��􂈒�􀀩 a.e..

If �􀀨�􀀨�􀀩�􀀩􀀾􀀰 then �􂉠􀀱. If � satisfies one of these conditions, then � 􎸒􎨱 is integrable.

For a given function � in �􎸞􀀨�􀀩, the form of a weight � such that ��􎨫􀀫�􎸒 is bounded in

�􎨲􀀨� 􀀩 was given in our preceding paper [14]. The proof of Lemma A is similar to it. In §2, we

shall give the proof. It is known that �� is left invertible (resp. invertible) in � 􎨲 if and only if

��􎨫􀀫�􎸒 is left invertible (resp. invertible) in �􎨲􀀨�􀀩 (cf.[10], p.71 and [15], p.393). Left invertibilities

of singular integral operators ��􎨫􀀫�􎸒 and Toeplitz operators �� in weighted spaces were never

been studied. In §3, we shall give the form of a weight� such that ��􎨫􀀫�􎸒 (resp. ��) is bounded
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and left invertible in �􎨲􀀨� 􀀩 (resp. � 􎨲􀀨� 􀀩). A central role is played by the Cotlar-Sadosky lifting

theorem and Lemma A. The invertibility of �� in weighted spaces was already studied by

Rochberg [16]. In §4, we shall consider the invertibility of ��􎨫􀀫�􎸒 and �� in weighted spaces.

For a function � in �􎨲􀀨� 􀀩, the �􎨲􀀨� 􀀩 norm of � is denoted by 􎘌� 􎘌�􀀽􎝁��
􎘋� 􎘋􎨲 ���􎝑

􎨱􎐼􎨲

.

§2. PROOF OF LEMMA A.

We shall show that (i) implies (ii). Suppose �􀀽􀀰 in (i), then by the calculation we have �􀀽􀀱 a.e.

which contradicts to �􀀨�􀀨�􀀩􀀩􀀾􀀰. Hence we have �􂉠􀀰. Since � is in � 􀀨�􀀩, we have

􎘋� 􎨲􂈒� 􎘋􎨲􂈒􎘋�􂈒􀀱􎘋􎨲� 􎨲􀀽􀀨� 􎨲􂈒􀀱􀀩􀀨� 􎨲􂈒􎘋� 􎘋􎨲􀀩􂉧􀀰 a.e..

Hence � 􀀨� 􀀬 �􀀩􂉦􀀱 a.e. and 􎘋� 􎘋􂉦􀀲� 􎘋� 􎨲􂈒� 􎘋 a.e.. Suppose �􀀨�􀀨�􀀩�􀀩􀀾􀀰 and �􀀽􀀱 in (i), then �􀀽􀀰 a.e.

on �􀀨�􀀩� and hence �􀀽􀀰 a.e.. This contradiction implies that if�􀀨�􀀨�􀀩�􀀩􀀾􀀰 then �􂉠􀀱. Since � is in

� 􀀨�􀀩, � 􎨲􂈒� belongs to �. Hence there exists a function � in �􎸞
� 􀀨�􀀩 such that � 􎨲􂈒� 􀀽

􎘋� 􎨲􂈒� 􎘋 􀁥􀁸􀁰 􀀨��􀀩 a.e. and 􎘋� 􎨲􂈒� 􎘋 􀁥􀁸􀁰 􀀨��􀀩 is bounded. Put �􀀽� 􀁥􀁸􀁰 􀀨��􂈒��􀀩, then 􎘋� 􎘋􂉦􀀲� 􎘋� 􎨲􂈒� 􎘋 􀁥􀁸􀁰

􀀨��􀀩 a.e.. Hence � is a non-zero function in � 􎨱. Put �􀀽Arg �, then 􎘋� 􎘋􂉦􀁣􀁯􀁳􎸒􎨱 � 􀀨� 􀀬 �􀀩 a.e. since

�􀀽Arg􎜂 �
� 􎨲􂈒� 􎜒 a.e., and 􎞂�􂈒

�
� 􎨲􂈒� 􎞂􂉦􎝀􀀱􂈒� 􀀨� 􀀬 �􀀩􎨲􎝐

􎨱􎐼􎨲
� a.e..

Since � is an outer function such that Re �􂉧􀀰 a.e. and

􀁥􀁸􀁰􀀨��􂈒��􀀩
􎘋􀁥􀁸􀁰􀀨��􂈒��􀀩􎘋 􀀽

�
􎘋� 􎘋 a.e.,

there exists a positive constant � such that 􀁥􀁸􀁰 􀀨��􂈒��􀀩􀀽�g a.e. (cf.[11], Proposition 5). Put

�􀀽��􀀫��􀀫􀁬􀁯􀁧�􀀫􀁬􀁯􀁧 �􀀫􀁬􀁯􀁧 �􀀫��􎨨�􎨩􀁬􀁯􀁧􎘋�􂈒􀀱􎘋􀀫��􎨨�􎨩�􀁬􀁯􀁧􎘋�􂈒�􎸒􎨱􎘋,

then

�􀀽􎜂��􎨨�􎨩�
�

􎘋� 􎨲􂈒􀀱􎘋
􀀫��􎨨�􎨩

􀀱
􎘋�􂈒􀀱􎘋 􎜒 􀁥􀁸􀁰 􀀨�􂈒��􂈒��􂈒�􀀩 a.e..

Since 􎘋􀀱􂈒� 􀀨� 􀀬 �􀀩 􀁥􀁸􀁰 􀀨��􂈒�􀀩􎘋􎨲􂉦􀀱􂈒� 􀀨� 􀀬 �􀀩􎨲 a.e. on �􀀨�􀀩, we have

�2�􂈒􀀲􎜂 􀁣􀁯􀁳 �
� 􀀨� 􀀬 �􀀩 􎜒��􀀫􀀱􂉦􀀰 a.e. on �􀀨�􀀩,

and hence 􎘋� 􎘋􂉦� 􀀨� 􀀬 �􀀬 �􀀩 a.e. on �􀀨�􀀩. Since

􎞂 �
� 􎨲􂈒� 􎞂

􎨲

􂉦􀀲� 􀁒􀁥􎜂 �
� 􎨲􂈒� 􎜒 a.e.,

we have

14

J. HOKKAI-GAKUEN UNIV. No.171 (March. 2017)



􎞂 �
� 􎨲􂈒� 􎞂􂉦􀀲� 􀁣􀁯􀁳 � a.e..

Hence � 􎸒􎨱􂉦􀀲� 􎘋� 􎨲􂈒� 􎘋􀁥􀁸􀁰􀀨��􀀫��􀀩 􀁣􀁯􀁳 � a.e.. Since 􎘋� 􎘋􂉦�􎐼􀀲 a.e., 􀁥􀁸􀁰􀀨��􀀩􀁣􀁯􀁳 � is integrable (cf.[6], p.

161). Since � is in � 􀀨�􀀩, � 􎸒􎨱 is integrable. Since 􀀨􀁣􀁯􀁳 �􀀩􎸒� is integrable for some �, �􀀾􀀰, we have

�􀁻􎘋� 􎘋􀀽�􎐼􀀲􀁽􀀽􀀰. Since

􀀲�� 􎘋� 􎨲􂈒􀀱􎘋􀁥􀁸􀁰􀀨��􀀫��􀀩 􀁣􀁯􀁳 �􂉧1 a.e. on �􀀨�􀀩�,

we have􂈒􀁬􀁯􀁧􀀨􀀲 􀁣􀁯􀁳 �􀀩􂉦� a.e. on �􀀨�􀀩�. We shall show that (ii) implies (i). Since 􎘋� 􎘋􂉦� 􀀨� 􀀬 �􀀬 �􀀩 a.e.

on �􀀨�􀀩, we have

􎘋􀀱􂈒� 􀀨� 􀀬 �􀀩􀁥􀁸􀁰􀀨��􂈒�􀀩􎘋􎨲􂈒􀁻􀀱􂈒� 􀀨� 􀀬 �􀀩􎨲􀁽􀀽� 􀀨� 􀀬 �􀀩􎨲􎝂�􎸒􎨲�􂈒􀀲􎜂 􀁣􀁯􀁳 �
� 􀀨� 􀀬 �􀀩 􎜒�􎸒�􀀫􀀱􎝒􂉦􀀰 a.e. on �􀀨�􀀩.

Put �􀀽� 􀁥􀁸􀁰 􀁻�􀀨�􀀫�􀀩􂈒􀀨�􀀫�􀀩􎩾􂈒�􀁽, then

􎘋􀀨� 􎨲􂈒�􀀩�􂈒� 􎘋􀀽􎘋􀀱􂈒� 􀀨� 􀀬 �􀀩􀁥􀁸􀁰􀀨��􂈒�􀀩􎘋􂈙􎘋� 􎨲􂈒� 􎘋�􂉦􀁻􀀱􂈒� 􀀨� 􀀬 �􀀩􎨲􀁽􎨱􎐼􎨲􎘋� 􎨲􂈒� 􎘋� a.e. on �􀀨�􀀩.

Since 􂈒􀁬􀁯􀁧􀀨􀀲 􀁣􀁯􀁳 �􀀩􂉦� a.e. on �􀀨�􀀩�, we have 􎘋􀀱􂈒􀁥􀁸􀁰􀀨��􂈒�􀀩􎘋􂉦􀀱 a.e. on �􀀨�􀀩�. Hence

􎘋􀀨� 􎨲􂈒􀀱􀀩�􂈒� 􎘋􀀽􎘋� 􎨲􂈒􀀱􎘋􂈙􎘋􀀱􂈒􀁥􀁸􀁰􀀨��􂈒�􀀩􎘋�􂉦􎘋� 􎨲􂈒􀀱􎘋� a.e. on �􀀨�􀀩�.

Since 􎘋� 􎘋􂉦􀀲􎘋� 􎨲􂈒� 􎘋� a.e., � is in � 􎨱. Hence (i) follows. This completes the proof.

If ��􎨨�􎨩􀁬􀁯􀁧􎘋�􂈒􀀱􎘋 is integrable, then it is possible to take an integrable function � in condition

(ii). If � 􀀨� 􀀬 �􀀩 is bounded away from zero, then it is possible to take a bounded function � in (ii).

§3. LEFT INVERTIBILITY.

We shall give the form of a weight � such that ��􎨫􀀫�􎸒 is bounded and left invertible in

�􎨲􀀨� 􀀩. If� is in 􀀨�􎨲􀀩, then ��􎨫􀀫�􎸒 is left invertible in �􎨲􀀨� 􀀩 if and only if �� is left invertible in

� 􎨲􀀨� 􀀩.

Definition. For a � in � 􀀨�􀀩 and a � in �􎸞􀀨�􀀩, let

�􀀨� 􀀬 �􀀩􀀽􀁻�􀀽�􂈒��􂈒��􂈒� 􀀻

􎘋� 􎘋􂉦􀁣􀁯􀁳􎸒􎨱� 􀀨� 􀀬 �􀀩 a.e., �􀁻�􀀽�􎐼􀀲􀁽􀀽􀀰.

􎘋� 􎘋􂉦� 􀀨� 􀀬 �􀀬 �􀀩 a.e. on �􀀨�􀀩, and 􂈒􀁬􀁯􀁧􀀨􀀲 􀁣􀁯􀁳 �􀀩􂉦� a.e. on �􀀨�􀀩�.

�􂈈�􀀨� 􎨲􂈒�􀀩, and � is a real constant.􀁽.
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If � 􀀨� 􀀬 �􀀩 is bounded away from zero, then �􀀨� 􀀬 �􀀩 is a convex subset of BMO.

Theorem 1. Suppose � is a function in �􎸞􀀨�􀀩 such that �􀀨�􀀨�􀀩􀀩􀀾􀀰. Suppose � is a positive

constant such that both � and �􎸒􎨱 belong to � 􀀨�􀀩. For a weight� such that 􀁬􀁯􀁧� is integrable, the

following conditions are equivalent.

(i) �􎘌� 􎘌�􂉦􎘌􀀨��􎨫􀀫�􎸒􀀩� 􎘌�􂉦�􎸒􎨱􎘌� 􎘌� , for all � in �􀀫��􎨰.

(ii) �􂉦􀀱, �􂉦􎘋� 􎘋􂉦�􎸒􎨱 a.e., �􀁻�􀀽�􎨲􀁽􀀽�􀁻�􀀽�􎸒􎨲􀁽􀀽􀀰 and there exists an � in �􀀨�􀀬 �􀀩 􂋂

�􀀨�􎸒􎨱􀀬 �􀀩 such that

�􀀽􎜂 �
􎘋�􎨲􂈒􀀱􎘋

��􎨨�􎨩�􀀫
􀀱

􎘋�􂈒􀀱􎘋 ��􎨨�􎨩􎜒􀁥􀁸􀁰 � a.e..

If �􀀨�􀀨�􀀩�􀀩􀀾􀀰 then �􂉠􀀱. If � satisfies one of these conditions, then � 􎸒􎨱 is integrable.

Proof. By Cotlar-Sadoskyʼs theorem [4], if follows from (i) that there exist two functions �, ��

in � 􎨱 such that

􎘋􀀨�􎨲􂈒�􀀩�􂈒� 􎘋􎨲􂉦􀀨�􎨲􂈒􀀱􀀩􀀨�􎨲􂈒􎘋� 􎘋􎨲􀀩� 􎨲 a.e.,
􎘋􀀨�􎸒􎨲􂈒�􀀩�􂈒�� 􎘋􎨲􂉦􀀨�􎸒􎨲􂈒􀀱􀀩􀀨�􎸒􎨲􂈒􎘋� 􎘋􎨲􀀩� 􎨲 a.e..

Since �􀀨�􀀨�􀀩􀀩􀀾􀀰, it follows that � and �� are non-zero functions. Suppose �􀁻�􀀽�􎨲􀁽􀀾􀀰, then

�􀁻�􀀽􀀰􀁽􀀾􀀰. Since � is in � 􎨱, we have �􀀽􀀰 a.e. (cf.[8], p.76). This contradiction implies

�􀁻�􀀽�􎨲􀁽􀀽􀀰. In the same way we have �􀁻�􀀽�􎸒􎨲􀁽􀀽􀀰. Then

􀀨�􎪱􎨲􂈒􀀱􀀩􀀨�􎪱􎨲􂈒􎘋� 􎘋􎨲􀀩􀀽􀁻􀀱􂈒� 􀀨�􎪱􎨱􀀬 �􀀩􎨲􀁽􎘋� 􎨲􂈒� 􎘋􎨲 a.e..

We use Lemma A to complete the proof.

Remark 1. For a function � such that 􎘋� 􎘋􀀽􀀱 a.e., we have � 􀀨�􀀬 �􀀩􀀽� 􀀨�􎸒􎨱􀀬 �􀀩 a.e. and hence

� 􀀨�􀀬 �􀀬 �􀀩􀀽� 􀀨�􎸒􎨱􀀬 �􀀬 �􀀩 a.e.. In this case the condition (ii) in the above theorem becomes as follows.

(ii)′ There exist three functions �, �, � and a constant � such that

�􀀽􎜂 �
􎘋�􎨲􂈒􀀱􎘋

��􎨨�􎨩�􀀫
􀀱

􎘋�􂈒􀀱􎘋 ��􎨨�􎨩􎜒􀁥􀁸􀁰􀀨�􂈒��􂈒��􂈒�􀀩 a.e.,

where 􎘋� 􎘋􂉦􀁣􀁯􀁳􎸒􎨱 � 􀀨�􀀬 �􀀩 a.e., �􀁻􎘋� 􎘋􀀽�􎐼􀀲􀁽􀀽􀀰 􀀻

􎘋� 􎘋􂉦� 􀀨�􀀬 �􀀬 �􀀩 a.e. on �􀀨�􀀩, and

􂈒􀁬􀁯􀁧 􀀨􀀲 􀁣􀁯􀁳 �􀀩􂉦� a.e. on �􀀨�􀀩� 􀀻 �􂈈�􀀨�􎨲􂈒�􀀩􂋂�􀀨�􎸒􎨲􂈒�􀀩.

It should be mentioned that if �􀀽􂈒􀀱 a.e., then the condition (ii)′ becomes the Arocena, Cotlar

and Sadoskyʼs condition (cf.[1], [3] and [4]). In this case ��􎨫􀀫�􎸒􀀽􂈒�􎨫􀀫�􎸒 is invertible if and only

16

J. HOKKAI-GAKUEN UNIV. No.171 (March. 2017)



if it is bounded. Then �􀀨􂈒􀀱􀀩􀀽�, � 􀀨�􀀬 􂈒􀀱􀀩 􀀽 � 􀀨�􎸒􎨱􀀬 􂈒􀀱􀀩 􀀽 􀀲�􎐼􀀨􀀱􀀫�􎨲􀀩 a.e., and �􀀨�􎨲􀀫􀀱􀀩 􂋂

�􀀨�􎸒􎨲􀀫􀀱􀀩 contains a function �􀀽􀀰.

Corollary 1. Suppose � is a function in �􎸞􀀨�􀀩 such that 􎘋�􂈒􀀱􎘋􀀾􀀰 a.e. and � 􀀨�􀀩 contains a

constant 1. For a weight� such that 􀁬􀁯􀁧� is integrable, the following conditions are equivalent.

(i) ��􎨫􀀫�􎸒 is an isometry in �􎨲􀀨� 􀀩.

(ii) 􎘋� 􎘋􀀽􀀱 a.e., and there exist an � in �􀀨􀀱􂈒�􀀩 and a positive constant � such that

�􀀽
�

􎘋�􂈒􀀱􎘋 􀁥􀁸􀁰 􀀨􂈒��􀀩 a.e..

If � satisfies one of these conditions, then � 􎸒􎨱 is bounded.

Proof. It follows from (i) that

􎘌􀀨��􎨫􀀫�􎸒􀀩� 􎘌�􀀽􎘌� 􎘌� , for all � in �􀀫��􎨰.

This is the case �􀀽􀀱 in Theorem 1. Hence, 􎘋� 􎘋􀀽􀀱 a.e. and there exists an � in �􀀨􀀱􀀬 �􀀩 such that

�􀀽􎘋�􂈒􀀱􎘋􎸒􎨱􀁥􀁸􀁰� a.e.. Since � 􀀨􀀱􀀬 �􀀩􀀽􀀱 a.e., we have

�􀀨􀀱􀀬 �􀀩􀀽􀁻􂈒��􂈒� 􀀻 �􂈈�􀀨􀀱􂈒�􀀩, and � is a real constant􀁽.

Since � 􀀨�􀀩 contains 1, 􎘋􀀱􂈒� 􎘋 􀁥􀁸􀁰 􀀨��􀀩 is bounded for some � in �􀀨􀀱􂈒�􀀩 and hence� 􎸒􎨱 is bounded.

We use Theorem 1 to complete the proof.

Definition. For a function � in �􎸞􀀨�􀀩, let �􀀨�􀀬 􀀫􀀩, �􀀨�􀀬 􂈒􀀩 and �􀀨�􀀩 denote subsets of real

measurable functions such that

�􀀨�􀀬 􀂱􀀩􀀽 􂋃
�􎸈� 􎨨�􎨬 􎪱􎨩

�􀀨� 􀀬 �􀀩 and �􀀨�􀀩􀀽�􀀨�􀀬 􀀫􀀩􂋂�􀀨�􀀬 􂈒􀀩.

Theorem 2. Suppose � is a function in �􎸞􀀨�􀀩 such that 􎘋�􂈒􀀱􎘋􀀾􀀰 a.e.. Suppose there exists a

positive constant � such that 􀀨􀀰􀀬 �􀁝􂋃􀁛�􎸒􎨱􀀬 􂈞􀀩 is a subset of � 􀀨�􀀩. For a weight� such that 􀁬􀁯􀁧� is

integrable, the following conditions are equivalent.

(i) ��􎨫􀀫�􎸒 is bounded and left invertible in �􎨲􀀨� 􀀩.

(ii) � is bounded away from zero and there exists a function � in �􀀨�􀀩 such that�􀀽􎘋�􂈒􀀱􎘋􎸒􎨱

􀁥􀁸􀁰 � a.e..

If � satisfies one of these conditions, then � 􎸒􎨱 is integrable.

Proof. We shall show that (i) implies (ii). By (i), there exists a positive constant � such that

both � and �􎸒􎨱 belong to � 􀀨�􀀩 and
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�􎘌� 􎘌�􂉦􎘌􀀨��􎨫􀀫�􎸒􀀩� 􎘌�􂉦�􎸒􎨱􎘌� 􎘌� , for all � in �􀀫��􎨰.

By Theorem 1, there exists an � in �􀀨�􀀬 �􀀩􂋂�􀀨�􎸒􎨱􀀬 �􀀩 such that �􀀽􎘋�􂈒􀀱􎘋􎸒􎨱􀁥􀁸􀁰 � a.e.. Since

�􀀨�􀀬 �􀀩􂋂�􀀨�􎸒􎨱􀀬 �􀀩 is a subset of �􀀨�􀀩, (ii) follows. The converse is also true. This completes the

proof.

Proposition 3. Suppose 􎘋�􂈒􀀱􎘋􀀾􀀰 a.e.. Let � and �� be positive constants satisfying �􀀼�� . If

� 􀀨�􀀩􀀽� 􀀨�􀀩, then the following statements are true.

(1) If � and �� belong to � 􀀨�􀀬 􀀫􀀩, then �􀀨� 􀀬 �􀀩 is a subset of �􀀨�� 􀀬 �􀀩 and � 􀀨�� 􀀬 �􀀩􂉦� 􀀨� 􀀬 �） a.e..

(2) If � and �� belong to � 􀀨�􀀬 􂈒􀀩, then �􀀨�� 􀀬 �􀀩 is a subset of �􀀨� 􀀬 �􀀩 and � 􀀨� 􀀬 �􀀩􂉦� 􀀨�� 􀀬 �） a.e..

Proof. Put �􀀽� 􀀨� 􀀬 �􀀩 and ��􀀽� 􀀨�� 􀀬 �􀀩, then

�� 􎨲􂈒� 􎨲􀀽
􀀨�� 􎨲􂈒� 􎨲􀀩􀀨􎘋� 􎘋􎨲􂈒�� 􎨲� 􎨲􀀩

􎘋�� 􎨲􂈒� 􎘋􎨲􎘋� 􎨲􂈒� 􎘋􎨲
a.e..

We shall prove (1). Since � and �� belong to � 􀀨�􀀬 􀀫􀀩, we have ��􂉦� a.e.. Let � be in �􀀨� 􀀬 �􀀩 and put

�􀀽􎘋�􂈒􀀱􎘋􎸒􎨱 􀁥􀁸􀁰 �, then it follows from Lemma A that there exists a � in � 􎨱 such that

􎘋􀀨� 􎨲􂈒�􀀩�􂈒� 􎘋􎨲􂉦􀀨� 􎨲􂈒􀀱􀀩􀀨� 􎨲􂈒􎘋� 􎘋􎨲􀀩� 􎨲 a.e..

By Cotlar-Sadoskyʼs theorem [4],

􎘌􀀨��􎨫􀀫�􎸒􀀩� 􎘌�􂉦� 􎘌� 􎘌�􂉦�� 􎘌� 􎘌� ,

for all � in �􀀫��􎨰. By Cotlar-Sadoskyʼs theorem, there exists a �� in � 􎨱 such that

􎘋􀀨�� 􎨲􂈒�􀀩�􂈒�� 􎘋􎨲􂉦􀀨�� 􎨲􂈒􀀱􀀩􀀨�� 􎨲􂈒􎘋� 􎘋􎨲􀀩� 􎨲 a.e..

By Lemma A, there exists an �� in �􀀨�� 􀀬 �􀀩 such that�􀀽􎘋�􂈒􀀱􎘋􎸒􎨱 􀁥􀁸􀁰 �� a.e. and hence �􀀽�� a.e..

Thus �􀀨� 􀀬 �􀀩 is a subset of �􀀨�� 􀀬 �􀀩. The proof of (2) is similar to one of (1). This completes the proof.

Proposition 4. If � 􀀨�􀀩􀀽� 􀀨�􀀩 and � 􀀨� 􀀬 �􀀩 is bounded away from zero for all � in � 􀀨�􀀩, then

�􀀨�􀀬 􀀫􀀩, �􀀨�􀀬 􂈒􀀩 and �􀀨�􀀩 are convex subsets of BMO.

Proof. Let � and �� be in �􀀨�􀀬 􀀫􀀩. There exist � and �� in � 􀀨�􀀬 􀀫􀀩 such that � is in �􀀨� 􀀬 �􀀩 and

�� is in �􀀨�� 􀀬 �􀀩. Since � 􀀨� 􀀬 �􀀩 is bounded away from zero, we have 􎘋�􂈒􀀱􎘋􀀾􀀰 a.e. and � 􀀨� 􀀬 �􀀬 �􀀩 is in

�􎸞
� 􀀨�􀀩. Since 􎘋�􂈒􀀱􎘋􀀾􀀰 a.e. and � 􀀨�􀀩􀀽� 􀀨�􀀩, it follows from Proposition 3 that the convex

combination of � and �� belongs to either �􀀨� 􀀬 �􀀩 or �􀀨�� 􀀬 �􀀩 which is a convex subset of �􀀨�􀀬 􀀫􀀩.

Hence �􀀨�􀀬 􀀫􀀩 is a convex subset of BMO. It follows in the similar way that �􀀨�􀀬 􂈒􀀩 is convex and
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hence �􀀨�􀀩 is also convex.

Proposition 5. (1) If � is an outer function in � 􎸞, then � 􀀨�􀀩􂋃􀁻􀀱􀁽􀀽� 􀀨�􀀩.

(2) If � is a function in �􎸞
� 􀀨�􀀩 such that (ess inf �􀀬 ess sup �) does not contain zero, then

� 􀀨�􀀩􀀽� 􀀨�􀀩.

Proof.We shall prove (1). Let � be any constant in � 􀀨�􀀬 􀀫􀀩 not equal to one. Put �􀀽� 􎨲􂈒�, then

� is an invertible function in � 􎸞 since 􎘋� 􎘋􂉧� 􎨲􂈒􀁒􀁥 �􂉧� 􎨲􂈒􀁭􀁡􀁸􀁻� 􀀬 􀀱􀁽􀀾􀀰 a.e.. Hence there exist a

function � and a constant � such that �􀀽􀁥􀁸􀁰􀀨�􀀫���􀀫��􀀩 a.e.. Put �􀀽��􀀫�, then � is in �􀀨�􀀩 since

􎘋� 􎘋􀁥􀁸􀁰􀀨��􀀩􀀽�� for some constant �� . Thus � 􀀨�􀀬 􀀫􀀩 is a subset of � 􀀨�􀀩􂋃􀁻􀀱􀁽. Let � be any constant in

� 􀀨�􀀬 􂈒􀀩 not equal to one. We may assume that � is bounded away from zero. Put �􀀽� 􎨲􂈒�􀀬 then �

is an invertible function in � 􎸞 since Re􀀨�􎸒􎨱􂈒�􎸒􎨱􀀩􂉧􀀰 a.e. and 􎘋� 􎘋􂉧􀀨􀀱􂈒�􀀩􀀨ess inf 􎘋� 􎘋􀀩􀀾􀀰 a.e.. Thus

� 􀀨�􀀬 􂈒􀀩 is a subset of � 􀀨�􀀩􂋃􀁻􀀱􀁽. Hence � 􀀨�􀀩􂋃􀁻􀀱􀁽􀀽� 􀀨�􀀩. We shall prove (2). Let � be any constant

in � 􀀨�􀀬 􀀫􀀩. Put �􀀽� 􎨲􂈒�􀀬 then � is in �􎸞
� 􀀨�􀀩 and �􂉧􀀰 a.e. since 􎘋� 􎘋􂉦�􂉦� 􎨲 a.e.. Put �􀀽Arg �, then

�􀀽􀀰 a.e. and hence 􎘋� 􎘋􀁥􀁸􀁰􀀨��􀀩 is bounded. Thus � 􀀨�􀀬 􀀫􀀩 is a subset of � 􀀨�􀀩. Let � be any constant in

� 􀀨�􀀬 􂈒􀀩. Since (ess inf �􀀬 ess sup �) does not contain zero, we have �􂉧􀀰 a.e. or �􂉦􀀰 a.e.. If �􂉧􀀰 a.e.,

then �􂉦􀀰 a.e. since �􂉧�􂉧� 􎨲 a.e.. Put �􀀽Arg �, then �􀀽􂈒� a.e. and hence 􎘋� 􎘋􀁥􀁸􀁰􀀨��􀀩 is bounded.

Thus � 􀀨�􀀬 􂈒􀀩 is a subset of � 􀀨�􀀩. If �􂉦􀀰 a.e., then �􂉧􀀰 a.e. and hence � 􀀨�􀀬 􂈒􀀩 is a subset of � 􀀨�􀀩.

Hence � 􀀨�􀀩􀀽� 􀀨�􀀩. This completes the proof.

For a weight�, � 􎨲􀀨� 􀀩 (resp. � 􎨲
􎨰 􀀨� 􀀩) denotes the �􎨲􀀨� 􀀩-norm closure of � (resp. �􎨰). If�

is in 􀀨�􎨲􀀩, then �� is bounded in � 􎨲􀀨� 􀀩 and ��􎨫􀀫�􎸒 is bounded in �􎨲􀀨� 􀀩.

Proposition 6. Let � be a function in �􎸞􀀨�􀀩. For a � in 􀀨�􎨲􀀩, the following conditions are

equivalent.

(i) ��􎨫􀀫�􎸒 is left invertible in �􎨲􀀨� 􀀩.

(ii) �􎨫��􎨫􀀫�􎸒 is left invertible in �􎨲􀀨� 􀀩.

(iii) ��� is left invertible in � 􎨲􀀨� 􀀩.

Proof. Put

�􎨱􀀽inf􀁻􎘌􀀨��􎨫􀀫�􎸒􀀩� 􎘌� 􀀻 �􂈈�􀀫��􎨰, 􎘌� 􎘌�􀀽􀀱􀁽,

�􎨲􀀽inf􀁻􎘌􀀨�􎨫��􎨫􀀫�􎸒􀀩� 􎘌� 􀀻 �􂈈�􀀫��􎨰, 􎘌� 􎘌�􀀽􀀱􀁽, and

�􎨳􀀽inf􀁻􎘌��� 􎘌� 􀀻 �􂈈�, 􎘌� 􎘌�􀀽􀀱􀁽.

Suppose �􎨱􀀾􀀰 and let � be any function in �􀀫��􎨰 satisfying 􎘌� 􎘌�􀀽􀀱. Since �􎨫��􎨫 􀀫�􎸒 􀀽

􀀨��􎨫􀀫�􎸒􀀩􀀨�􂈒�􎸒��􎨫􀀩,
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􎘌􀀨�􎨫��􎨫􀀫�􎸒􀀩� 􎘌�􂉧�􎨱􎘌􀀨�􂈒�􎸒��􎨫􀀩� 􎘌�􂉧�􎨱􎘌�􀀫�􎸒��􎨫􎘌􎸒􎨱

� ,

it follows that �􎨲􂉧�􎨱􎘌�􀀫�􎸒��􎨫􎘌􎸒􎨱

� 􀀾􀀰. Hence (i) implies (ii). Suppose �􎨲􀀾􀀰 and let � be any function

in � satisfying 􎘌� 􎘌�􀀽􀀱. Since 􎘌��� 􎘌�􂉧􎘌􀀨�􎨫��􎨫􀀫�􎸒􀀩� 􎘌�􂉧�􎨲, we have �􎨳􂉧�􎨲􀀾􀀰. Hence (ii)

implies (iii). Suppose �􎨳􀀾􀀰 and let � be any function in �􀀫��􎨰 satisfying 􎘌� 􎘌�􀀽􀀱. Since 􎘌�􎨫􎘌�􀀽

􎘌�􎸒􎘌� (cf.[14]),

�􎨳􂉦�􎨳􀀨􎘌�􎨫� 􎘌�􀀫􎘌�􎸒� 􎘌�􀀩􂉦􎘌��􀀨�􎨫� 􀀩􎘌�􀀫�􎨳􎘌�􎸒� 􎘌�􂉦􀀨􀀱􀀫�􎨳􀀩􎘌�􎨫􎘌� 􎘌􀀨�􎨫��􎨫􀀫�􎸒􀀩� 􎘌� .

We have �􎨳􂉦�􎨲􀀨􀀱􀀫�􎨳􀀩􎘌�􎨫􎘌� and hence �􎨲􀀾􀀰. Hence (iii) implies (ii). Suppose �􎨲􀀾􀀰 and let � be any

function in �􀀫��􎨰 satisfying 􎘌� 􎘌�􀀽􀀱. Since ��􎨫􀀫�􎸒􀀽􀀨�􎨫��􎨫􀀫�􎸒􀀩􀀨�􀀫�􎸒��􎨫􀀩,

􎘌􀀨��􎨫􀀫�􎸒􀀩� 􎘌�􂉧�􎨲􎘌􀀨�􀀫�􎸒��􎨫􀀩� 􎘌�􂉧�􎨲􎘌�􂈒�􎸒��􎨫􎘌􎸒􎨱

� ,

we have �􎨱􂉧�􎨲􎘌�􂈒�􎸒��􎨫􎘌􎸒􎨱

� 􀀾􀀰. Hence (ii) implies (i). This completes the proof.

Proposition 7. Suppose � is a function in �􎸞
� 􀀨�􀀩 such that �􂈒􀀱 is bounded away from zero,

and [ess inf �, ess sup �] does not contain zero. If ��􎨫􀀫�􎸒 is left invertible in �􎨲􀀨� 􀀩, then� is in

􀀨�􎨲􀀩.

Proof. Since [ess inf �, ess sup �] does not contain zero and ��􎨫􀀫�􎸒 is left invertible, it

follows that there exists a constant � in � 􀀨�􀀩 such that �􎨲 does not belong to [ess inf �􀀬 ess sup �]

and

�􎘌� 􎘌�􂉦􎘌􀀨��􎨫􀀫�􎸒􀀩� 􎘌� , for all � in �􀀫��􎨰.

By Cotlar-Sadoskyʼs theorem, there exists a � in � 􎨱 such that

􎘋􀀨�􂈒�􎨲􀀩�􂈒� 􎘋􂉦􀁻􀀨􎘋� 􎘋􎨲􂈒�􎨲􀀩􀀨􀀱􂈒�􎨲􀀩􀁽􎨱􎐼􎨲�􂉦􀁻􀀱􂈒� 􀀨�􀀬 �􀀩􎨲􀁽􎨱􎐼􎨲􎘋�􂈒�􎨲􎘋� a.e..

Since �􂈒�􎨲 and �􂈒􀀱 are bounded away from zero, it follows that � 􀀨�􀀬 �􀀩 is bounded away from

zero. Then �􂈒�􎨲􀀾􀀰 a.e. or �􂈒�􎨲􀀼􀀰 a.e.. By Lemma A, 􎘋�􂈒�􎨲􎘋� is in 􀀨�􎨲􀀩 and hence � is in

􀀨�􎨲􀀩. This completes the proof.

Remark 2. Suppose E is a Borel subset of a unit circle. Suppose � is a function in �􎨱
�􀀨�􀀩 such

that exp � is integrable, not in 􀀨�􎨲􀀩, 􂈒􀁬􀁯􀁧 􀀲􂉦� a.e. on ��, and 􎘋� 􎘋􂉦􀁣􀁯􀁳􀁨􎸒􎨱􀁻􀀨􀀱􀀫�􎨲􀀩􎐼􀀨􀀲�􀀩􀁽 a.e. on E.

For a constant � satisfying 􀀰􀀼�􂉦􀀱, put

�􀀨�􀀬 �􀀩􀀽􀁻� 􀀻 �􎘌� 􎘌�􂉦􎘌􀀨􀀨􀀱􂈒􀀲��􀀩�􎨫􀀫�􎸒􀀩� 􎘌�􂉦�􎸒􎨱􎘌� 􎘌� , for all � in �􀀫��􎨰􀁽.
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The following statements are then true.

(a) If 􀀰􀀼�􀀨�􀀩􀀼􀀱, 􀀰􀀼�􀀼􀀱 and�􀀽􀁻􀀨􀀲�􀀩􎐼􀀨􀀱􂈒�􎨲􀀩���􀀫��􀁽 􀁥􀁸􀁰 �, then� is in �􀀨�􀀬 �􀀩, not in

􀀨�􎨲􀀩.

(b) If �􀀨�􀀩􀀽􀀱, then 􀀨􀀱􂈒􀀲��􀀩�􎨫􀀫�􎸒􀀽􂈒�􎨫􀀫�􎸒 and hence �􀀨�􀀬 �􀀩 is a subset of 􀀨�􎨲􀀩.

In this section, we have assumed that 􀁬􀁯􀁧� is integrable. Similar results hold on the

assumption that �􀀾􀀰 a.e.. If �􀁻�􀀽􀀰􀁽􀀾􀀰, then the following conditions are equivalent.

(i) ��􎨫􀀫�􎸒 is bounded and left invertible in �􎨲􀀨� 􀀩.

(ii) �􀀽􀀰 a.e. on �􀀨�􀀩, and � has no restriction on �􀀨�􀀩�.

§4. INVERTIBILITY.

We shall consider the invertibility of operators ��􎨫􀀫�􎸒 and �� in weighted spaces. If� is in

􀀨�􎨲􀀩, then ��􎨫􀀫�􎸒 is invertible in �􎨲􀀨� 􀀩 if and only if �� is invertible in � 􎨲􀀨� 􀀩. We shall use

Rochberg theorem (cf.[16]) to prove Theorem 8.

Theorem 8. Let � be a function in �􎸞􀀨�􀀩. For a � in 􀀨�􎨲􀀩, the following conditions are

equivalent.

(i) ��􎨫􀀫�􎸒 is invertible in �􎨲􀀨� 􀀩.

(ii􀀩 �� is invertible in � 􎨲􀀨� 􀀩.

(iii) � can be written as

�􀀽􀁥􀁸􀁰􀀨�􀀫��􂈒��� 􀀩 a.e.

with c a real constant; U a function in �􎸞
� 􀀨�􀀩 􀀻 � a real measurable function such that ��� is in

􀀨�􎨲􀀩.

If � and � satisfy one of these conditions, then

􎘌�􀀫�􎸒��􎨫􎘌􎸒􎨱

� 􎘌� 􎸒􎨱
� 􎘌�􂉦􎘌􀀨��􎨫􀀫�􎸒􀀩􎸒􎨱􎘌�􂉦􀀨􀀱􀀫􎘌� 􎸒􎨱

� 􎘌�􀀩􎘌�􎨫􎘌� 􎘌�􂈒�􎸒��􎨫􎘌� .

Proof. Rochberg [16] proved (ii) is equivalent to (iii). We shall show that (i) implies (ii). By

Proposition 6, (i) implies that �� is left invertible in � 􎨲􀀨� 􀀩. Let � be any function in �􎨲􀀨� 􀀩. Since

��􎨫􀀫�􎸒 has a dense range in �􎨲􀀨� 􀀩, ���􎨫􀀽�􎨫􀀨��􎨫􀀫�􎸒􀀩 on �􀀫��􎨰, and �􎨫 is bounded in

�􎨲􀀨� 􀀩, it follows that �� has a dense range in � 􎨲􀀨� 􀀩. We shall show that (iii) implies (i) parallel to

Rochberg [16]. Let �􎨱 be a function such that

�􎨱􀀽􀁥􀁸􀁰
􀀱
􀀲 􀁻􀀨�􀀫��� 􀀩􂈒􀀨�􀀫��� 􀀩􀁽 a.e.
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and put �􎨲􀀽�/�􎨱 then �􎨱 and ��􎨲 are invertible function in � � for some �, �􀀾􀀱 such that 􎘋�􎨱􎘋
􎨲􀀽

􀁥􀁸􀁰􀀨�􂈒� 􀀩 a.e. and 􎘋�􎨲􎘋
􎨲􀀽􀁥􀁸􀁰􀀨�􀀫� 􀀩 a.e.. Define the operator � by

��􀀽􀀨�􎸒􎨱
􎨱 �􎨫􀀫�􎨲�􎸒􀀩􀀨�􎸒􎨱

􎨲 � 􀀩, � is in �􀀫��􎨰.

Since �􎸒􎨱
􎨲 � is in �􎨲􀀨���􀀩􂋂� �􀀨�􀀩 for some constant �, �􀀾􀀱 we have

􎘌�� 􎘌�􂉦􎘌�􎸒􎨱
􎨱 �􎨫􀀨�􎸒􎨱

􎨲 � 􀀩􎘌�􀀫􎘌�􎨲�􎸒􀀨�􎸒􎨱
􎨲 � 􀀩􎘌�

􂉦􀀨􀁥􀁸􀁰 􎘌� 􎘌􎸞􀀩􎨱􎐼􎨲􀁻􎘌�􎨫􀀨�􎸒􎨱
􎨲 � 􀀩􎘌���􀀫􎘌�􎸒􀀨�􎸒􎨱

􎨲 � 􀀩􎘌���􀁽

􂉦􀀲􀀨􀁥􀁸􀁰 􎘌� 􎘌􎸞􀀩􎨱􎐼􎨲􎘌�􎨫􎘌���􎘌�
􎸒􎨱
􎨲 � 􎘌���

􂉦􀀲􀀨􀁥􀁸􀁰 􎘌� 􎘌􎸞􀀩􎘌�􎨫􎘌���􎘌� 􎘌� .

The third inequality holds since ��� is in 􀀨�􎨲􀀩. Thus � extends to a bounded map of �􎨲􀀨� 􀀩 to

�􎨲􀀨� 􀀩. We shall show that for a function � in �􀀫��􎨰, �􀀨��􎨫􀀫�􎸒􀀩􀀽􀀨��􎨫􀀫�􎸒􀀩�􀀽 � . Since

�􎨫�􎨱�􎨫􀀽�􎨱�􎨫, �􎸒�􎸒􎨱
􎨲 �􎸒􀀽�􎸒􎨱

􎨲 �􎸒 and �􎸒�􎨱�􎨫􀀽�􎨫�􎸒􎨱
􎨲 �􎸒􀀽􀀰, we have

�􀀨��􎨫􀀫�􎸒􀀩�􀀽􀀨�􎸒􎨱
􎨱 �􎨫􀀫�􎨲�􎸒􀀩􀀨�􎸒􎨱

􎨲 􀀨��􎨫􀀫�􎸒􀀩� 􀀩􀀽􀀨�􎸒􎨱
􎨱 �􎨫􀀫�􎨲�􎸒􀀩􀀨􀀨�􎨱�􎨫􀀫�􎸒􎨱

􎨲 �􎸒􀀩� 􀀩􀀽� .

Since �􎨫�􎸒􎨱
􎨱 �􎨫􀀽�􎸒􎨱

􎨱 �􎨫, �􎸒�􎨲�􎸒􀀽�􎨲�􎸒, �􎸒�􎸒􎨱
􎨱 �􎨫􀀽�􎨫�􎨲�􎸒􀀽􀀰, we have

􀀨��􎨫􀀫�􎸒􀀩��􀀽􀀨��􎨫􀀫�􎸒􀀩􀀨�􎸒􎨱
􎨱 �􎨫􀀫�􎨲�􎸒􀀩􀀨�􎸒􎨱

􎨲 � 􀀩􀀽� .

Hence ��􎨫􀀫�􎸒 has a bounded inverse, namely �. Hence (i) follows. The operator norm inequality

follows from the proof of Proposition 6. This completes the proof.

For a� in 􀀨��􀀩, the necessary and sufficient conditions for �� to be invertible in � �􀀨� 􀀩 was

given by Rochberg (cf.[16]). Theorem 8 is the case �􀀽􀀲. It is possible to modify this theorem for �,

􀀱􀀼�􀀼􂈞.

Proposition 9. For a weight � in 􀀨�􎨲􀀩, either of the following two conditions imply that

��􎨫􀀫�􎸒 has a dense range in �􎨲􀀨� 􀀩.

(a) � is an outer function in � 􎸞.

(b) � is a function in �􎸞
� 􀀨�􀀩 such that (ess inf �􀀬 ess sup �) does not contain zero.

Proof. Since � is in 􀀨�􎨲􀀩, there exists an invertible function � in � 􎨲 such that �􀀽􎘋� 􎘋􎨲 a.e..

Let 􀀨􂈙􀀬 􂈙􀀩� denote the inner product in �􎨲􀀨� 􀀩. Let � be a function in �􎨲􀀨� 􀀩 such that

􀀨􀀨��􎨫􀀫�􎸒􀀩� 􀀬 �􀀩�􀀽􀀰, for all � in �􎨲􀀨� 􀀩. Since �􎨫􎐼� is in � 􎨲􀀨� 􀀩 and �􎸒􎐼�� is in �� 􎨲
􎨰 􀀨� 􀀩, we have

􀀨�􀀨�􎨫􎐼�􀀩􀀬 �􀀩�􀀽􀀰 for all �􎨫 in �, and 􀀨􀀨�􎸒􎐼��􀀩􀀬 �􀀩�􀀽􀀰 for all �􎸒 in ��􎨰. Hence ����� is in � 􎨲
􎨰 and ��� is

in � 􎨲. Put �􀀽�� and �􀀽��􀁧���, then � and � are functions in � 􎨱 and hence �� belongs to � 􎨱􎐼􎨲.
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Suppose (a) holds. Since 􀀨���􀀩􎐼�􀀽� 􎨲􎘋� 􎘋􎨲􂉧􀀰 a.e., 􀀨���􀀩􎐼� is a function in � 􎨱􎐼􎨲 which is real and

non-negative almost everywhere. Hence there exists a constant � such that 􀀨���􀀩􎐼�􀀽� a.e. (cf.

[6], p.95). Since � is an outer function, �􀀽􀀰. Since � and � are non-zero functions, �􀀽􀀰 a.e..

Suppose (b) holds. Since ���􀀽�� 􎨲􎘋� 􎘋􎨲 a.e. and (ess inf �􀀬 ess sup �) does not contain zero, we have

���􂉧􀀰 a.e. or ���􂉦􀀰 a.e.. Since ��� is in � 􎨱􎐼􎨲, there exists a constant � such that ���􀀽� a.e..

Hence �􀀽􀀰 a.e.. This completes the proof.

Proposition 10. Suppose � is an outer function in � 􎸞 not equal to one. Let � be a positive

constant. For a weight � in 􀀨�􎨲􀀩, ��􎨫􀀫�􎸒 has a dense range in �􎨲􀀨� 􀀩 and the following

conditions are equivalent.

(i) �􎘌� 􎘌�􂉦􎘌􀀨��􎨫􀀫�􎸒􀀩� 􎘌� , for all � in �􀀫��􎨰.

(ii) �􂉦􀁭􀁩􀁮􀁻􀀱􀀬 􎘋� 􎘋􀁽 a.e. and there exist a positive constant � and two real functions u, � such

that

�􀀽
�

� 􀀨�􀀬 �􀀩 􀁥􀁸􀁰􀀨�􂈒��􀀩 a.e.,

􎘋� 􎘋􂉦􀁣􀁯􀁳􎸒􎨱� 􀀨�􀀬 �􀀩 a.e. and 􎘋� 􎘋􂉦� 􀀨�􀀬 �􀀬 �􀀩 a.e..

Proof. By Cotlar-Sadoskyʼs theorem, it follows from (i) that there exists a � in � 􎨱 such that

􎘋􀀨�􂈒�􎨲􀀩�􂈒� 􎘋􎨲􂉦� 􎨲􀀨􀀱􂈒�􎨲􀀩􀀨􎘋� 􎘋􎨲􂈒�􎨲􀀩 a.e..

Put �􀀽�􎨲􂈒�, then � is in � 􎸞. Put �􀀽􂈒�􎸒􎨲�􎸒􎨱, then � and �􎸒􎨱 belong to � 􎸞, since � is an outer

function and �􂉦􎘋� 􎘋 a.e.. Let � be any function in �􀀨�􎨲􂈒�􀀩. Since 􀁒􀁥 ��􂉧􀀰 a.e. and

􀁥􀁸􀁰􀀨��􂈒��􀀩
􎘋􀁥􀁸􀁰􀀨��􂈒��􀀩􎘋 􀀽

�
􎘋� 􎘋 a.e.,

there exists a positive constant � such that 􀁥􀁸􀁰􀀨��􂈒��􀀩􀀽�� a.e. (cf.[11], Proposition 5). Hence ��􀀽

􂈒􀁬􀁯􀁧􎘋�􎨲􂈒� 􎘋􀀫� a.e. for some real constant c. We use Lemma A to complete the proof.
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