HOKUGA 北海学園学術情報リポジトリ

タイトル	On Some Singular Integral Operators Which are One to One Mappings on the Weighted Lebesgue- Hilbert Spaces
著者	YAMAMOTO, Takanori
引用	北海学園大学学園論集(171): 11-24
発行日	2017-03-25

On Some Singular Integral Operators Which are One to One Mappings on the Weighted Lebesgue-Hilbert Spaces

Takanori YAMAMOTO

Dedicated to Professor Takahiko Nakazi on the occasion of his 70th birthday

ABSTRACT

Let ϕ be a bounded measurable function on the unit circle. Then we shall give the form of a weight W for which the singular integral operator $\phi P_+ + P_-$ is left invertible in the weighted space $L^2(W)$. P_+ is an analytic projection, P_- is a co-analytic projection. When W is an (A_2) weight, $\phi P_+ + P_-$ is left invertible (resp. invertible) in $L^2(W)$ if and only if Toeplitz operator T_{ϕ} is left invertible (resp. invertible) in $H^2(W)$.

KEYWORDS: Singular integral operator, Riesz projection, Hardy space

MSC (2010): Primary 46J15, 47B35.

§ 1. INTRODUCTION.

Let m denote the normalized Lebesgue measure on the unit circle $\mathbf{T} = \{\xi; |\xi| = 1\}$ and let χ denote the identity function on \mathbf{T} . For a function f in $L^1(m)$, its k-th Fourier coefficient $\hat{f}(k)$ is defined by

$$\hat{f}(k) = \int_{\mathbf{T}} \chi^{-k} f \, dm$$

for all integers k. For a function f in $L^1(m)$, its harmonic conjugate function \tilde{f} is defined by the singular integral

$$\tilde{f}(\theta) = VP \int_{\mathbf{T}} f(\theta - t) \cot \frac{t}{2} dm(t).$$

Let $C(\mathbf{T})$ be an algebra of all continuous functions f on \mathbf{T} , and let A be a disc algebra of all functions f in $C(\mathbf{T})$ such that $\hat{f}(k) = 0$ for all negative integers k. The Hardy spaces H^p , $0 , are defined as follows. For <math>0 , <math>H^p$ is the $L^p(m)$ -closure of A, while H^∞ is defined to be the

weak-* closure of A in $L^{\infty}(m)$. If an f in H^{ρ} has the form $f = \exp(u + i\tilde{u} + ic)$ a.e. for some function u in $L^1_R(m)$ and some real constant c, then f is called an outer function. Let A_0 be the subspace of all functions f in A which satisfy $\hat{f}(0) = 0$, and let \overline{A}_0 be the subspace of all complex conjugate functions of functions in A_0 . Since the intersection of H^1 and \overline{H}_0^1 is only the zero function, the analytic projection P_+ is defined as

$$P_{+}(f_{1}+f_{2})=f_{1}$$
, for all f_{1} in H^{1} and all f_{2} in \bar{H}_{0}^{1} .

The co-analytic projection P_- is defined by $P_- = I - P_+$ where I is an identity operator on $H^1 + \bar{H}_0^1$. Then

$$P_{\pm}f = \frac{1}{2} \{ f \pm i\tilde{f} \pm \hat{f}(0) \}, \text{ for all } f \text{ in } A + \overline{A}_{0}.$$

For a ϕ in $L^{\infty}(m)$, the Toeplitz operator T_{ϕ} is defined as a map from H^2 to H^2 by

$$T_{\phi}f = P_{+}(\phi f)$$
, for all f in H^{2} .

A non-negative integrable function W on \mathbf{T} is said to be a weight. P_+ is bounded on $L^p(W)$ if and only if W satisfies the A_p -condition (cf.[6], p.254). (A_p) denotes the set of all positive weights W satisfying the A_p -condition. In the case p=2, Helson-Szegö theorem gives the form of a weight W in (A_2) (cf.[6], p.147 and [7]). If W is in (A_2) , then T_{ϕ} is bounded in $H^2(W)$ and $\phi P_+ + P_-$ is bounded in $L^2(W)$. A weight W does not necessarily belong to (A_2) when those operators are bounded. In this paper we shall give the form of a weight W such that $\phi P_+ + P_-$ is bounded and left invertible in $L^2(W)$. It should be mentioned that W is in (A_2) if and only if there exist a function k in H^1 and a constant ρ , $\rho < 1$ such that $|W - k| \le \rho W$ a.e.. If W is in (A_2) , then $\log W$ is in $\mathrm{BMO} = L_R^\infty(m) + \widetilde{L}_R^\infty(m)$.

Definition. (1) For a function λ in $L^{\infty}(m)$,

$$A(\lambda) = \{s \in BMO ; \lambda = |\lambda| \exp(is) \ a.e.\},$$

 $A = \{\lambda \in L^{\infty}(m) ; |\lambda| \exp(\hat{s}) \text{ is bounded for some } s \text{ in } A(\lambda)\}.$

(2) For a function ϕ in $L^{\infty}(m)$, we shall wright

$$E(\phi) = \{ \zeta \in \mathbf{T} ; \phi(\zeta) \neq 1 \} \text{ and } m(E(\phi)) = \int_{E} dm = \int_{E} \frac{dt}{2\pi}.$$

 $I(\phi, +), I(\phi, -)$ denote intervals such that

$$I(\phi, +) = [\max\{1, \|\phi\|_{\infty}\}, \infty),$$

$$I(\phi, -) = \{0, \min\{1, \text{ ess inf } |\phi|\}\} \text{ and put}$$

$$I(\phi) = I(\phi, +) \bigcup I(\phi, -),$$

$$I(\phi) = \{t \in I(\phi) : t^2 - \phi \text{ belongs to } \Lambda\}.$$

(3) For a function ϕ in $L^{\infty}(m)$ and a constant t in $I(\phi)$ satisfying $m\{\phi=t^2\}=0$, put

$$r(t,\phi) = \left| \frac{(\phi - 1)t}{t^2 - \phi} \right|,$$

and for a function v satisfying $|v| \le \cos^{-1} r(t, \phi)$ a.e., put

$$U(t, \phi, v) = \cosh^{-1}\left(\frac{\cos v}{r(t, \phi)}\right).$$

In this paper we shall assume $-\pi \le \operatorname{Arg} z < \pi$. For any ϕ in $L^{\infty}(m)$, $0 \le m(E(\phi)) \le 1$. If $|\phi| = 1$ a.e., then $I(\phi) = (0, \infty)$. For any λ in $L^{\infty}(m)$, $\operatorname{Arg} \lambda$ belongs to a set $A(\lambda)$. $\Lambda \cdot \Lambda = \Lambda$ and Λ contains a set $A(\lambda)$ and $A(\lambda)$ belongs to $A(\lambda)$ if and only if there exist two functions $A(\lambda)$ is useful to study the boundedness and the left invertibility of $A(\lambda)$ in $A(\lambda)$ is useful to study the boundedness and the left invertibility of $A(\lambda)$ in $A(\lambda)$ in $A(\lambda)$ is useful to study the boundedness and the left invertibility of $A(\lambda)$ in $A(\lambda)$ in $A(\lambda)$ is useful to study the boundedness and the left invertibility of $A(\lambda)$ in $A(\lambda$

Lemma A. Suppose ϕ is a function in $L^{\infty}(m)$ such that $m(E(\phi)) > 0$. Suppose t is a constant in $J(\phi)$ such that $m\{\phi = t^2\} = 0$. Then $r(t, \phi) \le 1$ a.e.. For a weight W such that $\log W$ is integrable, the following conditions are equivalent.

(i) There exists a function k in H^1 such that

$$|(t^2-\phi)W-k| \le \{1-r(t,\phi)^2\}^{1/2} |t^2-\phi|W \text{ a.e.}.$$

(ii) There exist three functions u, v, s, and a constant c such that

$$|v| \le \cos^{-1} r(t, \phi)$$
 a.e., and $m\{|v| = \pi/2\} = 0$;

 $|u| \le U(t, \phi, v)$ a.e. on $E(\phi)$, and $-\log(2\cos v) \le u$ a.e. on $E(\phi)^c$;

s is in
$$A(t^2 - \phi)$$
, and $W = \left(\chi_{E(\phi)^c} \frac{t}{|t^2 - 1|} + \chi_{E(\phi)} \frac{1}{|\phi - 1|}\right) \exp(u - \tilde{v} - \tilde{s} - c)$ a.e..

If $m(E(\phi)^c) > 0$ then $t \neq 1$. If W satisfies one of these conditions, then W^{-1} is integrable.

For a given function ϕ in $L^{\infty}(m)$, the form of a weight W such that $\phi P_+ + P_-$ is bounded in $L^2(W)$ was given in our preceding paper [14]. The proof of Lemma A is similar to it. In § 2, we shall give the proof. It is known that T_{ϕ} is left invertible (resp. invertible) in H^2 if and only if $\phi P_+ + P_-$ is left invertible (resp. invertible) in $L^2(m)$ (cf.[10], p.71 and [15], p.393). Left invertibilities of singular integral operators $\phi P_+ + P_-$ and Toeplitz operators T_{ϕ} in weighted spaces were never been studied. In § 3, we shall give the form of a weight W such that $\phi P_+ + P_-$ (resp. T_{ϕ}) is bounded

and left invertible in $L^2(W)$ (resp. $H^2(W)$). A central role is played by the Cotlar-Sadosky lifting theorem and Lemma A. The invertibility of T_{ϕ} in weighted spaces was already studied by Rochberg [16]. In § 4, we shall consider the invertibility of $\phi P_+ + P_-$ and T_{ϕ} in weighted spaces. For a function f in $L^2(W)$, the $L^2(W)$ norm of f is denoted by $\|f\|_W = \left\{ \int_{\mathbb{T}} |f|^2 \ W dm \right\}^{1/2}$.

§ 2. PROOF OF LEMMA A.

We shall show that (i) implies (ii). Suppose k=0 in (i), then by the calculation we have $\phi=1$ a.e. which contradicts to $m(E(\phi))>0$. Hence we have $k\neq 0$. Since t is in $I(\phi)$, we have

$$|t^2-\phi|^2-|\phi-1|^2t^2=(t^2-1)(t^2-|\phi|^2)\geq 0$$
 a.e.

Hence $r(t,\phi) \le 1$ a.e. and $|k| \le 2W|t^2 - \phi|$ a.e.. Suppose $m(E(\phi)^c) > 0$ and t = 1 in (i), then k = 0 a.e. on $E(\phi)^c$ and hence k = 0 a.e.. This contradiction implies that if $m(E(\phi)^c) > 0$ then $t \ne 1$. Since t is in $J(\phi)$, $t^2 - \phi$ belongs to Δ . Hence there exists a function s in $L_R^\infty(m)$ such that $t^2 - \phi = |t^2 - \phi| \exp(is)$ a.e. and $|t^2 - \phi| \exp(\tilde{s})$ is bounded. Put $g = k \exp(\tilde{s} - is)$, then $|g| \le 2W|t^2 - \phi| \exp(\tilde{s})$ a.e.. Hence g is a non-zero function in H^1 . Put $v = \operatorname{Arg} g$, then $|v| \le \cos^{-1} r(t, \phi)$ a.e. since

$$v = \operatorname{Arg}\left(\frac{k}{t^2 - \phi}\right)$$
 a.e., and $\left|W - \frac{k}{t^2 - \phi}\right| \leq \left\{1 - r(t, \phi)^2\right\}^{1/2} W$ a.e..

Since g is an outer function such that Re $g \ge 0$ a.e. and

$$\frac{\exp(iv-\tilde{v})}{|\exp(iv-\tilde{v})|} = \frac{g}{|g|} \text{ a.e.,}$$

there exists a positive constant γ such that $\exp(iv-\tilde{v})=\gamma g$ a.e. (cf.[11], Proposition 5). Put

$$u = \tilde{v} + \tilde{s} + \log W + \log t + \log \gamma + \chi_{E(\phi)} \log |\phi - 1| + \chi_{E(\phi)} \log |t - t^{-1}|,$$

then

$$W = \left(\chi_{E(\phi)^c} \frac{t}{|t^2 - 1|} + \chi_{E(\phi)} \frac{1}{|\phi - 1|}\right) \exp\left(u - \tilde{v} - \tilde{s} - c\right) \text{ a.e..}$$

Since $|1-r(t,\phi)\exp(iv-u)|^2 \le 1-r(t,\phi)^2$ a.e. on $E(\phi)$, we have

$$e^{2u} - 2\left(\frac{\cos v}{r(t,\phi)}\right)e^{u} + 1 \le 0$$
 a.e. on $E(\phi)$,

and hence $|u| \le U(t, \phi, v)$ a.e. on $E(\phi)$. Since

$$\left|\frac{k}{t^2-\phi}\right|^2 \le 2W \operatorname{Re}\left(\frac{k}{t^2-\phi}\right)$$
 a.e.,

we have

On Some Singular Integral Operators Which are One to One Mappings on the Weighted Lebesgue-Hilbert Spaces (Takanori Yamamoto)

$$\left| \frac{k}{t^2 - \phi} \right| \le 2W \cos v$$
 a.e..

Hence $W^{-1} \le 2\gamma |t^2 - \phi| \exp(\tilde{v} + \tilde{s}) \cos v$ a.e.. Since $|v| \le \pi/2$ a.e., $\exp(\tilde{v}) \cos v$ is integrable (cf.[6], p. 161). Since t is in $J(\phi)$, W^{-1} is integrable. Since $(\cos v)^{-p}$ is integrable for some p, p > 0, we have $m\{|v| = \pi/2\} = 0$. Since

$$2\gamma W|t^2-1|\exp(\tilde{v}+\tilde{s})\cos v\ge 1$$
 a.e. on $E(\phi)^c$,

we have $-\log(2\cos v) \le u$ a.e. on $E(\phi)^c$. We shall show that (ii) implies (i). Since $|u| \le U(t, \phi, v)$ a.e. on $E(\phi)$, we have

$$|1-r(t,\phi)\exp(iv-u)|^2-\{1-r(t,\phi)^2\}=r(t,\phi)^2\Big\{e^{-2u}-2\Big(\frac{\cos v}{r(t,\phi)}\Big)e^{-u}+1\Big\}\leq 0 \text{ a.e. on } E(\phi).$$

Put $k = t \exp\{i(v+s) - (v+s)^{\sim} - c\}$, then

$$|(t^2-\phi)W-k|=|1-r(t,\phi)\exp(iv-u)|\cdot|t^2-\phi|W \le (1-r(t,\phi)^2)^{1/2}|t^2-\phi|W$$
 a.e. on $E(\phi)$.

Since $-\log(2\cos v) \le u$ a.e. on $E(\phi)^c$, we have $|1-\exp(iv-u)| \le 1$ a.e. on $E(\phi)^c$. Hence

$$|(t^2-1)W-k|=|t^2-1|\cdot|1-\exp(iv-u)|W\leq |t^2-1|W$$
 a.e. on $E(\phi)^c$.

Since $|k| \le 2|t^2 - \phi|W$ a.e., k is in H^1 . Hence (i) follows. This completes the proof.

If $\chi_{E(\phi)}\log|\phi-1|$ is integrable, then it is possible to take an integrable function u in condition (ii). If $r(t,\phi)$ is bounded away from zero, then it is possible to take a bounded function u in (ii).

§ 3. LEFT INVERTIBILITY.

We shall give the form of a weight W such that $\phi P_+ + P_-$ is bounded and left invertible in $L^2(W)$. If W is in (A_2) , then $\phi P_+ + P_-$ is left invertible in $L^2(W)$ if and only if T_{ϕ} is left invertible in $H^2(W)$.

Definition. For a t in $I(\phi)$ and a ϕ in $L^{\infty}(m)$, let

$$L(t,\phi) = \{\ell = u - \tilde{v} - \tilde{s} - c; \\ |v| \le \cos^{-1}r(t,\phi) \text{ a.e., } m\{v = \pi/2\} = 0. \\ |u| \le U(t,\phi,v) \text{ a.e. on } E(\phi), \text{ and } -\log(2\cos v) \le u \text{ a.e. on } E(\phi)^c. \\ s \in A(t^2 - \phi), \text{ and } c \text{ is a real constant.} \}.$$

If $r(t, \phi)$ is bounded away from zero, then $L(t, \phi)$ is a convex subset of BMO.

Theorem 1. Suppose ϕ is a function in $L^{\infty}(m)$ such that $m(E(\phi)) > 0$. Suppose ε is a positive constant such that both ε and ε^{-1} belong to $J(\phi)$. For a weight W such that $\log W$ is integrable, the following conditions are equivalent.

- (i) $\varepsilon \|f\|_{W} \le \|(\phi P_{+} + P_{-})f\|_{W} \le \varepsilon^{-1} \|f\|_{W}$, for all f in $A + \overline{A}_{0}$.
- (ii) $\varepsilon \leq 1$, $\varepsilon \leq |\phi| \leq \varepsilon^{-1}$ a.e., $m\{\phi = \varepsilon^2\} = m\{\phi = \varepsilon^{-2}\} = 0$ and there exists an ℓ in $L(\varepsilon, \phi) \cap L(\varepsilon^{-1}, \phi)$ such that

$$W = \left(\frac{\varepsilon}{|\varepsilon^2 - 1|} \chi_{E(\phi)}^c + \frac{1}{|\phi - 1|} \chi_{E(\phi)}\right) \exp \ell \ a.e..$$

If $m(E(\phi)^c) > 0$ then $\varepsilon \neq 1$. If W satisfies one of these conditions, then W^{-1} is integrable.

Proof. By Cotlar-Sadosky's theorem [4], if follows from (i) that there exist two functions k, k' in H^1 such that

$$\begin{aligned} &|(\varepsilon^2 - \phi) W - k|^2 \leq (\varepsilon^2 - 1)(\varepsilon^2 - |\phi|^2) W^2 \text{ a.e.,} \\ &|(\varepsilon^{-2} - \phi) W - k'|^2 \leq (\varepsilon^{-2} - 1)(\varepsilon^{-2} - |\phi|^2) W^2 \text{ a.e..} \end{aligned}$$

Since $m(E(\phi)) > 0$, it follows that k and k' are non-zero functions. Suppose $m\{\phi = \varepsilon^2\} > 0$, then $m\{k=0\} > 0$. Since k is in H^1 , we have k=0 a.e. (cf.[8], p.76). This contradiction implies $m\{\phi = \varepsilon^2\} = 0$. In the same way we have $m\{\phi = \varepsilon^{-2}\} = 0$. Then

$$(\varepsilon^{\pm 2} - 1)(\varepsilon^{\pm 2} - |\phi|^2) = \{1 - r(\varepsilon^{\pm 1}, \phi)^2\} |t^2 - \phi|^2$$
 a.e..

We use Lemma A to complete the proof.

Remark 1. For a function ϕ such that $|\phi|=1$ a.e., we have $r(\varepsilon,\phi)=r(\varepsilon^{-1},\phi)$ a.e. and hence $U(\varepsilon,\phi,v)=U(\varepsilon^{-1},\phi,v)$ a.e.. In this case the condition (ii) in the above theorem becomes as follows. (ii) There exist three functions u,v,s and a constant c such that

$$W = \left(\frac{\varepsilon}{|\varepsilon^2 - 1|} \chi_{E(\phi)^c} + \frac{1}{|\phi - 1|} \chi_{E(\phi)}\right) \exp(u - \tilde{v} - \tilde{s} - c) \text{ a.e.,}$$

where $|v| \le \cos^{-1} r(\varepsilon, \phi)$ a.e., $m\{|v| = \pi/2\} = 0$;

$$|u| \le U(\varepsilon, \phi, v)$$
 a.e. on $E(\phi)$, and

$$-\log(2\cos v) \le u$$
 a.e. on $E(\phi)^c$: $s \in A(\varepsilon^2 - \phi) \cap A(\varepsilon^{-2} - \phi)$.

It should be mentioned that if $\phi = -1$ a.e., then the condition (*ii*)' becomes the Arocena, Cotlar and Sadosky's condition (cf.[1], [3] and [4]). In this case $\phi P_+ + P_- = -P_+ + P_-$ is invertible if and only

On Some Singular Integral Operators Which are One to One Mappings on the Weighted Lebesgue-Hilbert Spaces (Takanori Yamamoto)

if it is bounded. Then $E(-1)=\mathbf{T}$, $r(\varepsilon,-1)=r(\varepsilon^{-1},-1)=2\varepsilon/(1+\varepsilon^2)$ a.e., and $A(\varepsilon^2+1)\cap A(\varepsilon^{-2}+1)$ contains a function s=0.

Corollary 1. Suppose ϕ is a function in $L^{\infty}(m)$ such that $|\phi-1|>0$ a.e. and $J(\phi)$ contains a constant 1. For a weight W such that $\log W$ is integrable, the following conditions are equivalent.

- (i) $\phi P_+ + P_-$ is an isometry in $L^2(W)$.
- (ii) $|\phi|=1$ a.e., and there exist an s in $A(1-\phi)$ and a positive constant C such that

$$W = \frac{C}{|\phi - 1|} \exp(-\tilde{s})$$
 a.e..

If W satisfies one of these conditions, then W^{-1} is bounded.

Proof. It follows from (i) that

$$\|(\phi P_+ + P_-)f\|_{W} = \|f\|_{W}$$
, for all f in $A + \overline{A}_0$.

This is the case $\varepsilon = 1$ in Theorem 1. Hence, $|\phi| = 1$ a.e. and there exists an ℓ in $L(1, \phi)$ such that $W = |\phi - 1|^{-1} \exp \ell$ a.e.. Since $r(1, \phi) = 1$ a.e., we have

$$L(1, \phi) = \{-\tilde{s} - c; s \in A(1 - \phi), \text{ and } c \text{ is a real constant}\}.$$

Since $J(\phi)$ contains 1, $|1-\phi|\exp(\tilde{s})$ is bounded for some s in $A(1-\phi)$ and hence W^{-1} is bounded. We use Theorem 1 to complete the proof.

Definition. For a function ϕ in $L^{\infty}(m)$, let $L(\phi, +)$, $L(\phi, -)$ and $L(\phi)$ denote subsets of real measurable functions such that

$$L(\phi, \pm) = \bigcup_{t \in I(\phi, \pm)} L(t, \phi)$$
 and $L(\phi) = L(\phi, +) \cap L(\phi, -)$.

Theorem 2. Suppose ϕ is a function in $L^{\infty}(m)$ such that $|\phi-1|>0$ a.e.. Suppose there exists a positive constant δ such that $(0, \delta] \cup [\delta^{-1}, \infty)$ is a subset of $J(\phi)$. For a weight W such that $\log W$ is integrable, the following conditions are equivalent.

- (i) $\phi P_+ + P_-$ is bounded and left invertible in $L^2(W)$.
- (ii) ϕ is bounded away from zero and there exists a function ℓ in $L(\phi)$ such that $W = |\phi 1|^{-1} \exp \ell$ a.e..

If W satisfies one of these conditions, then W^{-1} is integrable.

Proof. We shall show that (i) implies (ii). By (i), there exists a positive constant ε such that both ε and ε^{-1} belong to $J(\phi)$ and

$$\varepsilon \|f\|_{W} \le \|(\phi P_{+} + P_{-})f\|_{W} \le \varepsilon^{-1} \|f\|_{W}$$
, for all f in $A + \overline{A}_{0}$.

By Theorem 1, there exists an ℓ in $L(\varepsilon,\phi) \cap L(\varepsilon^{-1},\phi)$ such that $W = |\phi-1|^{-1} \exp \ell$ a.e.. Since $L(\varepsilon,\phi) \cap L(\varepsilon^{-1},\phi)$ is a subset of $L(\phi)$, (ii) follows. The converse is also true. This completes the proof.

Proposition 3. Suppose $|\phi-1|>0$ a.e.. Let t and t' be positive constants satisfying t< t'. If $J(\phi)=I(\phi)$, then the following statements are true.

- (1) If t and t' belong to $I(\phi, +)$, then $L(t, \phi)$ is a subset of $L(t', \phi)$ and $r(t', \phi) \le r(t, \phi)$ a.e..
- (2) If t and t' belong to $I(\phi, -)$, then $L(t', \phi)$ is a subset of $L(t, \phi)$ and $r(t, \phi) \le r(t', \phi)$ a.e..

Proof. Put $r = r(t, \phi)$ and $r' = r(t', \phi)$, then

$$r'^{2}-r^{2}=\frac{(t'^{2}-t^{2})(|\phi|^{2}-t'^{2}t^{2})}{|t'^{2}-\phi|^{2}|t^{2}-\phi|^{2}} \ a.e..$$

We shall prove (1). Since t and t' belong to $I(\phi, +)$, we have $r' \le r$ a.e.. Let ℓ be in $L(t, \phi)$ and put $W = |\phi - 1|^{-1} \exp \ell$, then it follows from Lemma A that there exists a k in H^1 such that

$$|(t^2-\phi)W-k|^2 \le (t^2-1)(t^2-|\phi|^2)W^2$$
 a.e..

By Cotlar-Sadosky's theorem [4].

$$\|(\phi P_+ + P_-)f\|_W \le t \|f\|_W \le t' \|f\|_W$$

for all f in $A + \overline{A}_0$. By Cotlar-Sadosky's theorem, there exists a k' in H^1 such that

$$|(t'^2 - \phi)W - k'|^2 \le (t'^2 - 1)(t'^2 - |\phi|^2)W^2$$
 a.e.

By Lemma A, there exists an ℓ' in $L(t', \phi)$ such that $W = |\phi - 1|^{-1} \exp \ell'$ a.e. and hence $\ell = \ell'$ a.e. Thus $L(t, \phi)$ is a subset of $L(t', \phi)$. The proof of (2) is similar to one of (1). This completes the proof.

Proposition 4. If $J(\phi) = I(\phi)$ and $r(t, \phi)$ is bounded away from zero for all t in $I(\phi)$, then $L(\phi, +), L(\phi, -)$ and $L(\phi)$ are convex subsets of BMO.

Proof. Let ℓ and ℓ' be in $L(\phi, +)$. There exist t and t' in $I(\phi, +)$ such that ℓ is in $L(t, \phi)$ and ℓ' is in $L(t', \phi)$. Since $r(t, \phi)$ is bounded away from zero, we have $|\phi-1|>0$ a.e. and $U(t, \phi, v)$ is in $L_R^\infty(m)$. Since $|\phi-1|>0$ a.e. and $J(\phi)=I(\phi)$, it follows from Proposition 3 that the convex combination of ℓ and ℓ' belongs to either $L(t, \phi)$ or $L(t', \phi)$ which is a convex subset of $L(\phi, +)$. Hence $L(\phi, +)$ is a convex subset of BMO. It follows in the similar way that $L(\phi, -)$ is convex and

hence $L(\phi)$ is also convex.

Proposition 5. (1) If ϕ is an outer function in H^{∞} , then $J(\phi) \cup \{1\} = I(\phi)$.

(2) If ϕ is a function in $L_R^{\infty}(m)$ such that (ess inf ϕ , ess sup ϕ) does not contain zero, then $J(\phi) = I(\phi)$.

Proof. We shall prove (1). Let t be any constant in $I(\phi,+)$ not equal to one. Put $\lambda = t^2 - \phi$, then λ is an invertible function in H^∞ since $|\lambda| \ge t^2 - \operatorname{Re} \phi \ge t^2 - \max\{t,1\} > 0$ a.e.. Hence there exist a function f and a constant c such that $\lambda = \exp(f + i\bar{f} + ic)$ a.e.. Put $s = \bar{f} + c$, then s is in $A(\lambda)$ since $|\lambda| \exp(\bar{s}) = c'$ for some constant c'. Thus $I(\phi,+)$ is a subset of $J(\phi) \cup \{1\}$. Let t be any constant in $I(\phi,-)$ not equal to one. We may assume that ϕ is bounded away from zero. Put $\lambda = t^2 - \phi$, then λ is an invertible function in H^∞ since $\operatorname{Re}(t^{-1} - \phi^{-1}) \ge 0$ a.e. and $|\lambda| \ge (1-t)(ess \inf |\phi|) > 0$ a.e.. Thus $I(\phi,-)$ is a subset of $J(\phi) \cup \{1\}$. Hence $J(\phi) \cup \{1\} = I(\phi)$. We shall prove (2). Let t be any constant in $I(\phi,+)$. Put $\lambda = t^2 - \phi$, then λ is in $L_R^\infty(m)$ and $\lambda \ge 0$ a.e. since $|\phi| \le t \le t^2$ a.e.. Put $s = \operatorname{Arg} \lambda$, then s = 0 a.e. and hence $|\lambda| \exp(\bar{s})$ is bounded. Thus $I(\phi,+)$ is a subset of $J(\phi)$. Let t be any constant in $I(\phi,-)$. Since $(ess \inf \phi, ess \sup \phi)$ does not contain zero, we have $\phi \ge 0$ a.e. or $\phi \le 0$ a.e.. If $\phi \ge 0$ a.e., then $\lambda \le 0$ a.e. since $|\lambda| \exp(\bar{s})$ is bounded. Thus $I(\phi,-)$ is a subset of $I(\phi)$. If $\phi \le 0$ a.e., then $\lambda \ge 0$ a.e. and hence $|\lambda| \exp(\bar{s})$ is bounded. Thus $I(\phi,-)$ is a subset of $I(\phi)$. If $\phi \le 0$ a.e., then $\lambda \ge 0$ a.e. and hence $I(\phi,-)$ is a subset of $I(\phi)$. This completes the proof.

For a weight W, $H^2(W)$ (resp. $H_0^2(W)$) denotes the $L^2(W)$ -norm closure of A (resp. A_0). If W is in (A_2) , then T_{ϕ} is bounded in $H^2(W)$ and $\phi P_+ + P_-$ is bounded in $L^2(W)$.

Proposition 6. Let ϕ be a function in $L^{\infty}(m)$. For a W in (A_2) , the following conditions are equivalent.

- (i) $\phi P_+ + P_-$ is left invertible in $L^2(W)$.
- (ii) $P_+\phi P_+ + P_-$ is left invertible in $L^2(W)$.
- (iii) $T_{\phi}f$ is left invertible in $H^2(W)$.

Proof. Put

$$\begin{split} & \varepsilon_{1} \! = \! \inf \{ \| (\phi P_{+} \! + \! P_{-}) f \|_{W} \, ; \, f \! \in \! A + \! \overline{A}_{0}, \, \| f \|_{W} \! = \! 1 \}, \\ & \varepsilon_{2} \! = \! \inf \{ \| (P_{+} \! \phi P_{+} \! + \! P_{-}) f \|_{W} \, ; \, f \! \in \! A + \! \overline{A}_{0}, \, \| f \|_{W} \! = \! 1 \}, \, \text{and} \\ & \varepsilon_{3} \! = \! \inf \{ \| T_{\phi} f \|_{W} \, ; \, f \! \in \! A, \, \| f \|_{W} \! = \! 1 \}. \end{split}$$

Suppose $\varepsilon_1 > 0$ and let f be any function in $A + \overline{A}_0$ satisfying $||f||_W = 1$. Since $P_+ \phi P_+ + P_- = (\phi P_+ + P_-)(I - P_- \phi P_+)$,

$$\|(P_+\phi P_+ + P_-)f\|_{w} \ge \varepsilon_1 \|(I - P_-\phi P_+)f\|_{w} \ge \varepsilon_1 \|I + P_-\phi P_+\|_{w}^{-1}$$

it follows that $\varepsilon_2 \ge \varepsilon_1 \|I + P_-\phi P_+\|_W^{-1} > 0$. Hence (i) implies (ii). Suppose $\varepsilon_2 > 0$ and let f be any function in A satisfying $\|f\|_W = 1$. Since $\|T_\phi f\|_W \ge \|(P_+\phi P_+ + P_-)f\|_W \ge \varepsilon_2$, we have $\varepsilon_3 \ge \varepsilon_2 > 0$. Hence (ii) implies (iii). Suppose $\varepsilon_3 > 0$ and let f be any function in $A + \overline{A}_0$ satisfying $\|f\|_W = 1$. Since $\|P_+\|_W = \|P_-\|_W$ (cf.[14]).

$$\varepsilon_3 \leq \varepsilon_3 (\|P_+ f\|_W + \|P_- f\|_W) \leq \|T_\phi(P_+ f)\|_W + \varepsilon_3 \|P_- f\|_W \leq (1 + \varepsilon_3) \|P_+\|_W \|(P_+ \phi P_+ + P_-) f\|_W.$$

We have $\varepsilon_3 \le \varepsilon_2 (1+\varepsilon_3) \|P_+\|_W$ and hence $\varepsilon_2 > 0$. Hence (*iii*) implies (*ii*). Suppose $\varepsilon_2 > 0$ and let f be any function in $A + \overline{A}_0$ satisfying $\|f\|_W = 1$. Since $\phi P_+ + P_- = (P_+ \phi P_+ + P_-)(I + P_- \phi P_+)$,

$$\|(\phi P_+ + P_-)f\|_{W} \ge \varepsilon_2 \|(I + P_-\phi P_+)f\|_{W} \ge \varepsilon_2 \|I - P_-\phi P_+\|_{W}^{-1}$$

we have $\varepsilon_1 \ge \varepsilon_2 ||I - P - \phi P_+||_W^{-1} > 0$. Hence (ii) implies (i). This completes the proof.

Proposition 7. Suppose ϕ is a function in $L_R^{\infty}(m)$ such that $\phi-1$ is bounded away from zero, and [ess inf ϕ , ess sup ϕ] does not contain zero. If $\phi P_+ + P_-$ is left invertible in $L^2(W)$, then W is in (A_2) .

Proof. Since [ess inf ϕ , ess sup ϕ] does not contain zero and $\phi P_+ + P_-$ is left invertible, it follows that there exists a constant ε in $I(\phi)$ such that ε^2 does not belong to [ess inf ϕ , ess sup ϕ] and

$$\varepsilon \|f\|_{W} \le \|(\phi P_{+} + P_{-})f\|_{W}$$
, for all f in $A + \overline{A}_{0}$.

By Cotlar-Sadosky's theorem, there exists a k in H^1 such that

$$|(\phi-\varepsilon^2)W-k| \leq \{(|\phi|^2-\varepsilon^2)(1-\varepsilon^2)\}^{1/2}W \leq \{1-r(\varepsilon,\phi)^2\}^{1/2}|\phi-\varepsilon^2|W \text{ a.e..}$$

Since $\phi - \varepsilon^2$ and $\phi - 1$ are bounded away from zero, it follows that $r(\varepsilon, \phi)$ is bounded away from zero. Then $\phi - \varepsilon^2 > 0$ a.e. or $\phi - \varepsilon^2 < 0$ a.e. By Lemma A, $|\phi - \varepsilon^2| W$ is in (A_2) and hence W is in (A_2) . This completes the proof.

Remark 2. Suppose E is a Borel subset of a unit circle. Suppose ℓ is a function in $L_R^1(m)$ such that $\exp \ell$ is integrable, not in (A_2) , $-\log 2 \le \ell$ a.e. on E^c , and $|\ell| \le \cosh^{-1}\{(1+\varepsilon^2)/(2\varepsilon)\}$ a.e. on E. For a constant ε satisfying $0 < \varepsilon \le 1$, put

$$R(E,\varepsilon) \! = \! \{W\,; \varepsilon \|f\|_{W} \! \leq \! \|((1-2\chi_{E})P_{+} + P_{-})f\|_{W} \! \leq \! \varepsilon^{-1} \|f\|_{W}, \text{ for all } f \text{ in } A + \overline{A}_{0}\}.$$

The following statements are then true.

- (a) If 0 < m(E) < 1, $0 < \varepsilon < 1$ and $W = \{(2\varepsilon)/(1-\varepsilon^2)\chi_{E^c} + \chi_E\} \exp \ell$, then W is in $R(E, \varepsilon)$, not in (A_2) .
- (b) If m(E)=1, then $(1-2\chi_E)P_++P_-=-P_++P_-$ and hence $R(E,\varepsilon)$ is a subset of (A_2) .

In this section, we have assumed that $\log W$ is integrable. Similar results hold on the assumption that W>0 a.e.. If $m\{W=0\}>0$, then the following conditions are equivalent.

- (i) $\phi P_+ + P_-$ is bounded and left invertible in $L^2(W)$.
- (ii) W=0 a.e. on $E(\phi)$, and W has no restriction on $E(\phi)^c$.

§ 4. INVERTIBILITY.

We shall consider the invertibility of operators $\phi P_+ + P_-$ and T_ϕ in weighted spaces. If W is in (A_2) , then $\phi P_+ + P_-$ is invertible in $L^2(W)$ if and only if T_ϕ is invertible in $H^2(W)$. We shall use Rochberg theorem (cf.[16]) to prove Theorem 8.

Theorem 8. Let ϕ be a function in $L^{\infty}(m)$. For a W in (A_2) , the following conditions are equivalent.

- (i) $\phi P_+ + P_-$ is invertible in $L^2(W)$.
- (ii) T_{ϕ} is invertible in $H^2(W)$.
- (iii) ϕ can be written as

$$\phi = \exp(U + ic - i\tilde{V}) \ a.e.$$

with c a real constant; U a function in $L_R^{\infty}(m)$; V a real measurable function such that We^V is in (A_2) .

If ϕ and W satisfy one of these conditions, then

$$\|I + P_{-}\phi P_{+}\|_{W}^{-1}\|T_{\phi}^{-1}\|_{W} \leq \|(\phi P_{+} + P_{-})^{-1}\|_{W} \leq (1 + \|T_{\phi}^{-1}\|_{W})\|P_{+}\|_{W}\|I - P_{-}\phi P_{+}\|_{W}.$$

Proof. Rochberg [16] proved (*ii*) is equivalent to (*iii*). We shall show that (*i*) implies (*ii*). By Proposition 6, (*i*) implies that T_{ϕ} is left invertible in $H^{2}(W)$. Let g be any function in $L^{2}(W)$. Since $\phi P_{+} + P_{-}$ has a dense range in $L^{2}(W)$, $T_{\phi}P_{+} = P_{+}(\phi P_{+} + P_{-})$ on $A + \overline{A}_{0}$, and P_{+} is bounded in $L^{2}(W)$, it follows that T_{ϕ} has a dense range in $H^{2}(W)$. We shall show that (*iii*) implies (*i*) parallel to Rochberg [16]. Let ϕ_{1} be a function such that

$$\phi_1 = \exp \frac{1}{2} \{ (U + i\tilde{U}) - (V + i\tilde{V}) \}$$
 a.e.

and put $\phi_2 = \phi/\phi_1$ then ϕ_1 and $\bar{\phi}_2$ are invertible function in H^p for some p, p>1 such that $|\phi_1|^2 = \exp(U-V)$ a.e. and $|\phi_2|^2 = \exp(U+V)$ a.e. Define the operator R by

$$Rf = (\phi_1^{-1}P_+ + \phi_2P_-)(\phi_2^{-1}f)$$
, f is in $A + \overline{A}_0$.

Since $\phi_2^{-1}f$ is in $L^2(We^V)\cap L^p(m)$ for some constant p, p>1 we have

$$\begin{split} \|Rf\|_{W} &\leq \|\phi_{1}^{-1}P_{+}(\phi_{2}^{-1}f)\|_{W} + \|\phi_{2}P_{-}(\phi_{2}^{-1}f)\|_{W} \\ &\leq (\exp\|U\|_{\infty})^{1/2} \{\|P_{+}(\phi_{2}^{-1}f)\|_{We^{V}} + \|P_{-}(\phi_{2}^{-1}f)\|_{We^{V}} \} \\ &\leq 2(\exp\|U\|_{\infty})^{1/2} \|P_{+}\|_{We^{V}} \|\phi_{2}^{-1}f\|_{We^{V}} \\ &\leq 2(\exp\|U\|_{\infty}) \|P_{+}\|_{We^{V}} \|f\|_{W}. \end{split}$$

The third inequality holds since We^V is in (A_2) . Thus R extends to a bounded map of $L^2(W)$ to $L^2(W)$. We shall show that for a function f in $A + \overline{A}_0$, $R(\phi P_+ + P_-) = (\phi P_+ + P_-)R = f$. Since $P_+\phi_1P_+ = \phi_1P_+$, $P_-\phi_2^{-1}P_- = \phi_2^{-1}P_-$ and $P_-\phi_1P_+ = P_+\phi_2^{-1}P_- = 0$, we have

$$R(\phi P_{+} + P_{-})f = (\phi_{1}^{-1}P_{+} + \phi_{2}P_{-})(\phi_{2}^{-1}(\phi P_{+} + P_{-})f) = (\phi_{1}^{-1}P_{+} + \phi_{2}P_{-})((\phi_{1}P_{+} + \phi_{2}^{-1}P_{-})f) = f.$$

Since $P_{+}\phi_{1}^{-1}P_{+} = \phi_{1}^{-1}P_{+}$, $P_{-}\phi_{2}P_{-} = \phi_{2}P_{-}$, $P_{-}\phi_{1}^{-1}P_{+} = P_{+}\phi_{2}P_{-} = 0$, we have

$$(\phi P_{+} + P_{-})Rf = (\phi P_{+} + P_{-})(\phi_{1}^{-1}P_{+} + \phi_{2}P_{-})(\phi_{2}^{-1}f) = f.$$

Hence $\phi P_+ + P_-$ has a bounded inverse, namely R. Hence (i) follows. The operator norm inequality follows from the proof of Proposition 6. This completes the proof.

For a W in (A_p) , the necessary and sufficient conditions for T_{ϕ} to be invertible in $H^p(W)$ was given by Rochberg (cf.[16]). Theorem 8 is the case p=2. It is possible to modify this theorem for p, 1 .

Proposition 9. For a weight W in (A_2) , either of the following two conditions imply that $\phi P_+ + P_-$ has a dense range in $L^2(W)$.

- (a) ϕ is an outer function in H^{∞} .
- (b) ϕ is a function in $L_R^{\infty}(m)$ such that (ess inf ϕ , ess sup ϕ) does not contain zero.

Proof. Since W is in (A_2) , there exists an invertible function h in H^2 such that $W = |h|^2$ a.e.. Let $(\cdot, \cdot)_W$ denote the inner product in $L^2(W)$. Let g be a function in $L^2(W)$ such that $((\phi P_+ + P_-)f, g)_W = 0$, for all f in $L^2(W)$. Since f_+/h is in $H^2(W)$ and f_-/\bar{h} is in $\bar{H}^2(W)$, we have $(\phi(f_+/h), g)_W = 0$ for all f_+ in A, and $((f_-/\bar{h}), g)_W = 0$ for all f_- in \bar{A}_0 . Hence $\phi \bar{h} \bar{g}$ is in H^2 and $\bar{h} g$ is in H^2 . Put F = Wg and $G = \bar{\chi} \bar{g} \phi W$, then F and G are functions in H^1 and hence FG belongs to $H^{1/2}$.

Suppose (a) holds. Since $(\chi FG)/\phi = W^2|g|^2 \ge 0$ a.e., $(\chi FG)/\phi$ is a function in $H^{1/2}$ which is real and non-negative almost everywhere. Hence there exists a constant C such that $(\chi FG)/\phi = C$ a.e. (cf. [6], p.95). Since ϕ is an outer function, C=0. Since ϕ and W are non-zero functions, g=0 a.e.. Suppose (b) holds. Since $\chi FG = \phi W^2|g|^2$ a.e. and (ess inf ϕ , ess sup ϕ) does not contain zero, we have $\chi FG \ge 0$ a.e. or $\chi FG \le 0$ a.e.. Since χFG is in $H^{1/2}$, there exists a constant C such that $\chi FG = C$ a.e.. Hence g=0 a.e.. This completes the proof.

Proposition 10. Suppose ϕ is an outer function in H^{∞} not equal to one. Let ε be a positive constant. For a weight W in (A_2) , $\phi P_+ + P_-$ has a dense range in $L^2(W)$ and the following conditions are equivalent.

- (i) $\varepsilon \|f\|_{W} \le \|(\phi P_{+} + P_{-})f\|_{W}$, for all f in $A + \overline{A}_{0}$.
- (ii) $\varepsilon \leq \min\{1, |\phi|\}$ a.e. and there exist a positive constant C and two real functions u, v such that

$$W = \frac{C}{r(\varepsilon, \phi)} \exp(u - \tilde{v}) \text{ a.e.,}$$
$$|v| \le \cos^{-1} r(\varepsilon, \phi) \text{ a.e. and } |u| \le U(\varepsilon, \phi, v) \text{ a.e..}$$

Proof. By Cotlar-Sadosky's theorem, it follows from (i) that there exists a k in H^1 such that

$$|(\phi - \varepsilon^2) W - k|^2 \le W^2 (1 - \varepsilon^2) (|\phi|^2 - \varepsilon^2)$$
 a.e..

Put $g = \varepsilon^2 - \phi$, then g is in H^{∞} . Put $k = -\varepsilon^{-2}\phi^{-1}$, then k and k^{-1} belong to H^{∞} , since ϕ is an outer function and $\varepsilon \leq |\phi|$ a.e. Let s be any function in $A(\varepsilon^2 - \phi)$. Since Re $kg \geq 0$ a.e. and

$$\frac{\exp(is-\hat{s})}{|\exp(is-\hat{s})|} = \frac{g}{|g|} \text{ a.e.,}$$

there exists a positive constant γ such that $\exp(is-\tilde{s}) = \gamma g$ a.e. (cf.[11], Proposition 5). Hence $\tilde{s} = -\log|\varepsilon^2 - \phi| + c$ a.e. for some real constant c. We use Lemma A to complete the proof.

Acknowledgements. The author wishes to thank Prof. T. Nakazi for many helpful conversations. This research was partly supported by Grant-in-Aid for Scientific Research.

REFERENCES

- 1. Arocena, R., A refinement of the Helson-Szegö theorem and the determination of the extremal measures, *Studia Math.* **71** (1981), 203–221.
- 2. Arocena, R. and Cotlar, M., A generalized Herglotz-Bochner theorem and L²-weighted inequalities

J. HOKKAI-GAKUEN UNIV. No.171 (March. 2017)

- with finite measures, Conference on harmonic analysis in Honor of Antoni Zygmund (Chicago, Ill, 1981), *Wadsworth Math. Ser.*, pp.258–269, Wadsworth, Belmont, 1983.
- 3. Arocena, R., Cotlar, M. and Sadosky, C., Weighted inequalities in L^2 and lifting properties, *Advances in Math.* Suppl. Studies 7A, 95–128, Academic Press, New York, 1981.
- 4. Cotlar, M. and Sadosky, C., On the Helson-Szegő theorem and a related class of modified Toeplitz kernels, Harmonic analysis in Euclidean spaces (Williamstown, Mass., 1978), *Proc. Symp. Pure Math.* Vol.35, pp.383-407, Amer. Math. Soc., Providence, R. I., 1979.
- 5. Cotlar, M. and Sadosky, C., Lifting properties, Nehari theorem, and Paley lacunary inequality, *Rev. Mat. Iberoamericana* **2** (1986), 55–72.
- 6. Garnett, J. B., Bounded Analytic Functions, Academic Press, New York, 1981.
- 7. Helson, H. and Szegő, G., A problem in prediction theory, Ann. Mat. Pura Appl. 51 (1960), 107-138.
- 8. Koosis, P., Introduction to H^p spaces, London Math. Society Lecture Note Series 40. Cambridge Univ. Press, London and New York, 1980.
- 9. Koosis, P., Moyennes quadratiques pondérées de fonctions périodiques et de leurs conjuguées harmoniques, C. R. Acad. Sci. Paris 291 (1980), 255–257.
- 10. Mikhlin, S. G. and Prössdorf, S., *Singular integral operators*, Springer-Verlag, Berlin and New York, 1986.
- 11. Nakazi, T., Exposed points and extremal problems in H¹, J. Funct. Anal. 53 (1983), 224-230.
- 12. Nakazi, T., Weighted norm inequalities and uniform algebras, *Proc. Amer. Math. Soc.* **103** (1988), 507–512.
- 13. Nakazi, T. and Yamamoto, T., A Lifting theorem and uniform algebras, *Trans. Amer. Math. Soc.* **305** (1988), 79–94.
- 14. Nakazi, T. and Yamamoto, T., Some singular integral operators and Helson-Szegő measures, *J. Funct. Anal.* **88** (1990), 366–384.
- 15. Nikol'skii, N. K., Treatise on the shift operator, Springer-Verlag, Berlin and New York, 1986.
- 16. Rochberg, R., Toeplitz operators on weighted H^b spaces, *Indiana Univ. Math. J.* 26 (1977), 291-298.
- 17. Yamamoto, T., On the generalization of the theorem of Helson and Szegö, *Hokkaido Math. J.* 14 (1985), 1–11.
- 18. Yamamoto, T., On weight functions and norms of some singular integral operators, *Journal of Hokkai-Gakuen University*, **121** (2004), 1–8.