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ABSTRACT

Let m be a normalized Lebesgue measure on the unit circle T. Let @ and & be bounded
m-measurable functions on T, and let w be a positive and integrable function on T. It is well
known that the Riesz projection P- is bounded on the weighted space L*(wdm) if and only if
w has the Helson-Szegd representation. Let P-=1—P., where [ denotes the identity
operator. In this paper, if the singular integral operator aP:+ bP- is bounded and invertible
on the weighted space L*(wdm), then we establish the Helson-Szegé type representation of
the weight function w using the operator norms of aP.+bP- and (aPs+bP-)"".
KEYWORDS: Singular integral operator, Riesz projection, Norm, Hardy space, Weight

function, Helson-Szegd weight.
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1. INTRODUCTION

Let m denote the normalized Lebesgue measure on the unit circle T=1{z;[z/=1}. That
is, dm(é’)zg—g for £=e”. Throughout this paper, we always assume that the weight
function w satisfies w >0 a.e. on T, and we L(T)=LXT, dm). Let P denote the set of all

trigonometric polynomials. Define the Riesz projection P; by
(P+f)(e”):§0f(k)e’“, fEP,
where /(%) denotes the k£-th Fourier coefficient of . Let S be the singular integral operator

(SIO) defined by
1 [ fa),

mJrz—§¢"

(SHE)=
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where the integral is understood in the sense of Cauchy’s principal value (cf. [13], p.11). If
fisin L', then (Sf)(¢) exists for almost everywhere ¢ on T, and Sf becomes a measurable
function on T. Let P-=I—P;, where [ denotes the identity operator. Then P:=P,

P:=P., P+=L—E—S, and p_:%_ Since S=P.—P-, S*=1. The harmonic conjugate

function 7 of f is defined by

f(e”)ZKZ c0t< 6; ! ) f(e™) %

where the integral is understood in the sense of Cauchy’s principal value. The Hilbert

transform H is defined by H=—i(P.—P-). Hence H=—iS. Then

f=—i(P.f—P-f)+if(0)
=—i(SF—7(0))
= Hf +if(0).

In particular if £(0)=0, then f=Hf. The weighted L*norm is defined by
1/2
7= WA= f 1P "

Let a,b€ L>(T)=L>(T, dm). If aP:+ bP- is a bounded operator on L*(wdm), then the
operator norm of aP;+ bP- is defined by

laP:+ bP-||=| aP:+ bP-|| s2con =sup{[[(aPs + bP) f|w ; fE LH w),

lw=1}.

H. Helson and G. Szeg6 proved that the Riesz projection P: is bounded on L*(dx) if and
only if dg=wdm is an (HS) measure (cf. [3], [12], [14], [15], [20], [21], [26]). Let H'
denote the Hardy space. H'is a norm-closed subspace of L'(T). There is a deep extension
of the Helson-Szegé approach developed in a series of papers by M. Cotlar, C. Sadosky, R.
Arocena and M. Dominguez (cf. [21] Vol.1, p.132, [24], [4], [2], [1], [23], [5], [8], [6], [25],
[7]). P.Koosis [16] established the two weights norm inequality for the Hilbert transform
on weighted L? spaces. In particular, M. Cotlar and C. Sadosky proved the following:

Theorem A. (Cotlar-Sadosky) For a positive constant M satisfying M =1, the following
arve equivalent:

() the Hilbert transform H is bounded on L*(wdm) and |H|<M;

2

. . M*—1 2
R 1 / ] 2 — < < ) ) .
(i) there exists h& H' such that |w—h|< ALY 1 1) ae on T;
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M
M*+1

2
(1) therve exists h& H' such that |w—h\2£<1—< > )wz a.e. on'T;

(iv) there exist veal functions u and v such that w=exp(u+ v+ const.),
- 2M >_lf . < 2M > _1(M2+1 >
ATy aresin{ ey and |u|<cosh ojf CosV)ae on T,

where cosh™'x=log(x+vx*—1).

[v]e< arccos(

If the SIO (&P, + bP-) is bounded and invertible on the weighted space L*(wdm), then we
shall consider the explicit form of the (HS) type weights w using functions arccos, arcsin and

cosh™ (cf. [19], [28], [29], [30]). In this paper, Theorems 3 and 4 are the main theorems.
2. MAIN THEOREMS AND COROLLARIES

In this section, we shall give the main theorems and their corollaries. We use Lemmas
1 and 2 to prove the main theorems. The proof of Lemma 1 is essential (cf. [19], [28], [29],
[30]), which uses the Cotlar-Sadosky lifting theorem. There are many kinds of proofs of the

lifting theorem.

Lemma 1. For a,bSL> and a positive constant M satisfving max(lal,|b)<M, let

(a—b)M

M?*—ab
(i) the SIO (aP:+ bP-) is bounded on L*wdm) and |aP.+ OP-|<M;
(ii) there exists hE H" such that (M?— ab)w— h*<(M*—|al?)(M*—|b)w? a.e. on T,

w—hP<(1—-d>w® ae. on T,

d= , then |d|l«<1, and the following are equivalent:

(ii1) theve exists h& H' such that

(iv) there exist real  functions w and v such  that w=explu+ & +const.) a.c.,

) T : [ cos v
lv|<arccos d == —arcsin d a.e. and |u|<cosh 1< n’ ) a.e. on'T.

The proof of Lemmal is similar to the proof of Theorem A, and the proof of the

following Lemma 2 is similar to one of Lemma 1.

Lemma 2. For a,b=L" and a positive constant N satisfying min(|al|b))=N, let
d= %, then |d|«<1, and the following are equivalent:

(7) Nlfle<(aPs+bP)fllw for every fEP;
(if) there exists W= H such that (N*—ab)w—hl*<(N*—|a)(N*—|b[)w* a.e. on T,




J. HOKKAI-GAKUEN UNIV. No.121 (September. 2004)

(i27) there exists h& H' such that \w—h*<(1—d*w? a.e. on T;
(2v) theve exist veal functions u and v such that w=exp(u+ ¥ +const.) a.e.,

T

|v| <arccos d:7—arcsin d a.e. and |u|£cosh“<

go;_v) a.e. on T.

The following Theorems 3 and 4 are the main theorems of this paper. These follow

from Lemmas 1 and 2.

Theorem 3. For a,bEL" and positive constants M and N satisfying |M*— ab|-|N*— ab|
(a=b)M I ’ (a—b)N )

<mi < < = = =
>0 and N<min(|al,|b])<max(|al,|6])<M, let d max( — b N—af

Then |d|«<1, and the following are equivalent:
() Nlflo=l(aPs+bP)flu<MIflw for every fEP;
(i) there exists hE H" such that |(M*—ab)w— hP<(M*—|a)(M?*—|b]>)w® a.c. on T;
(i17) there exists hE H" such that |w—h*<(1—d*>)w? a.e. on T;
(tv) there exist real functions w and v such that w=exp(u+ ¥ +const.) a.e.,

P . _1if cos v
|v|<arccos dzj—arcsm d a.e. and |u|<cosh 1(—@,—) a.e. on T.

Theorem 4 follows from Theorem 3. If wdm is the (HS) measure, then there are many
articles concerning the invertibility of the SIO (aP:+bP-) on L¥wdm) (cf. [3], [9], [10],
[13], [17], [21], [22]). In Theorems3 and 4, we do not assume that wdm is the (HS)
measure. In Theorem 4, we establish the (HS) type representation of the weight function w

using the operator norms of aP.+ bP- and (aP,+ bP-)"".

Theorem 4. For a,0E L~ such that the SIO (aP.+ bP.) is bounded and invertible on

ab

L¥Xwdm) and ||aPs+ bP-|[P— ab|- >0 a.e. on' T, let

1
I(aPs+ oP-) 7|

((a—b)laP:+bP-||
| |aP.+bP_|P—ab

b

_ (a—b)l(aP.+ bP)|
¢ ‘max< 1 abl(aP.+ 6P) 2 !)'

Then |d|=<1, and there exist real functions u and v such that w=exp(u+ 7 + const.) a.e.,

x_

|v|<arccos d = 5

. _if cos v
arcsin d a.e. and |u|<cosh I<T> ae. onT.

The following Corollaries 5, 6 and 7 follow from Theorem 3.



On Weight Functions and Norms of Some Singular Integral Operators (Takanori YAMAMOTO)

Corollary 5. For distinct and non-zero complex constants a, b and positive constants
M, N satisfving |M*—ab|-|N*—ab|>0 and N<min(|al,|bl)<max(lal,|b])<M, et

[(a~b)M |
| M?—ab |

(a—b)N|
N*—ab

d=max<

), then d <1, and the following arve equivalent:

(1) NIflo<l(aPetbP) M|/l for every FEP;
(71) there exist h, kREH' such that |[(M*—ab)w— hP<(M*—|a)(M*—|b|)w? a.e., and
(N?—ab)w —kP<(N*—|al>)(N*—|bP)w* a.e. on T;
(7i7) there exists hE H' such that lw—h*<(1—d®>w* a.e. on T;
(iv) theve exist veal functions u and v such that w=explu+ 0 +const.) a.e.,

| 0]l <arccos d:%—arcsin d and \ulécosh“<—09-2,l> a.e. on T,

Corollary 6. For distinct and non-zero complex constants a, b and a positive constant

(a—b)M
M*—ab

(i) the SIO (aP:+ bP-) is bounded on L wdm) and |aP:+ bP-|<M:
(i) the SIO (aP,+bP.)"'=a'P,+b'P- is bounded on L¥wdm) and

- M
lab|’

(i1) therve exists h& H' such that |(M*—ab)w — h*<(M*—|a|>)(M*— b)) w? a.e. on T;

(iv) theve exists h& H" such that lw—h*<(1—d*w? a.e. on T;

M satisfying max(lal,|b])< M, let d= , then d <1, and the following are equivalent:

I(aPs+bP)7Y|

(v) there exist wveal functions u, vEL* such that w=explu+ 0+const.) a.e.,

[ v]le<arccos d:%—arcsin d and |u\£cosh”<%> ae. on'T.

Corollary 7. Fur positice coustants M and N satistying N =-1=<M, lol y=min(M, N ),

2 2N? 2M 2N 2
M?*+1" N*+1 M?+1" N*+1 7 +1

8=max< > and d=max< d=

>. Then 0= RIS
and the following are equivalent:
() Nlflw<|Hflw<M|w for every FEP;
(i) there exists h& H' such that |lw—hl<(1—8)w a.e. on T;
(i) therve exists hE H' such that |lw—h*<(1—d*w? a.e. on T;

(iv) theve exist weal functions u, vEL™ such that w=explu+ 0+ const.),

2

||v||m£arccos(%)zgfarcsin<f%17> and \u!écosh’1<fzfé%cos U) a.e. on T.

(2]
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For distinct and non-zero complex constants @ and b, the SIO (aP: + bP-) is bounded on
L*(wdm) if and only if (aP.+ bP-) is invertible on L*(wdm) if and only if the Riesz projection
P, is bounded on L*wdm). Then

1
|abl

1

1 -1 -1 _
I(aP:+ bP-) I la 'Pr+ b6 'P| lab]

loP, + aP-| =" llaP. 4+ bP-|.

By Theorem 4, we have:

Corollary 8. For distinct and non-zevo complex constants a and b, the SIO (aP:+ bP-)
is bounded on LXwdm) if and only if (aPi+bP-) is invertible. Let

_|[(a—b)|aP.+bP]

=P+ 6P —ab |

Then 0<d <1, and there exist real functions u and v such that w=exp(u+ ¥ + const.) a.e.,

|v]le<arccos d:%—arcsin d and Iulécosh”(%v—) ae. onT.

Example. The relation between the norms of the operators H, P, P- on the space L¥w);

-1
||P+N=||Pv||_—_MHi2J£U—

was remarked by Spitkovsky [27]. Then
|HI=IS|=IP:—P-|=|P:] +VIP:J—1.

For 4&T, and —1<8<1, let w({)=[{—&[°. Then the equality HHH:coti(lliD was

obtained by Krupnik and Verbitsky [18]. Hence ||P+H:secﬂ78.

For complex constants «, b, the formula of the operator norm of aP:+ bP- on L*wdm)
was obtained by Feldman, Krupnik and Markus (cf. [11], [13, Section 13.5], [30]) as the

following:

Jap,+ 1=, [+ (WY [ (- TElY:

where

_'a—b‘z
7/_

If y=0, then the right hand side equals to max(|al,|]).
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— 2
For example, suppose w(&)=|¢—1"*. Then HP+HZS€C%:J7, and 7:‘*@27[) . Let

B _ Nla=bP (!al+ib!2 \/|a—b|Z lal—|b]\?
c_\|ap++bp_||-\/| 72+ (195 )+ = ‘+< : )

and let d= ‘f—;_%’. Then d <1, and for every distinct complex constants @ and b, we have

a’=L by the calculation, and w(&)=|&—1|"* has the Helson-Szegd representation:

72

theve exist real functions u and v such that w=exp(u+ ¥ +const.) a.e.,

| v]le<arccos dZ% and |u|£cosh‘l<%>=cosh’l(«/’2— cos v) a.e. on T.
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